|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
hexfet power mosfet benefits improved gate, avalanche and dynamic dv/dt ruggedness fully characterized capacitance and avalanche soa enhanced body diode dv/dt and di/dt capability lead-free rohs compliant, halogen-free* gds gate drain source fig 1. typical on-resistance vs. gate voltage fig 2. maximum drain current vs. case temperature applications brushed motor drive applications bldc motor drive applications battery powered circuits half-bridge and full-bridge topologies synchronous rectifier applications resonant mode power supplies or-ing and redundant power switches dc/dc and ac/dc converters dc/ac inverters 25 50 75 100 125 150 175 t c , case temperature (c) 0 50 100 150 200 250 300 350 i d , d r a i n c u r r e n t ( a ) limited by package v dss 40v r ds(on) typ. 1.25m max. 1.6m i d (silicon limited) 317a i d (package limited) 195a 2 4 6 8 10 12 14 16 18 20 v gs, gate -to -source voltage (v) 0 1 2 3 4 5 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ) i d = 100a t j = 25c t j = 125c d s g to-220ab IRFB7434pbf s d g d form quantity IRFB7434pbf to-220 tube 50 IRFB7434pbf base part number package type standard pack orderable part number downloaded from: http:/// calculated continuous current based on maximum allowable junction temperature. bond wire current limit is 195a. note that current limitations arising from heating of the device leads may occur withsome lead mounting arrangements. repetitive rating; pulse width limited by max. junction temperature. limited by t jmax , starting t j = 25c, l = 0.099mh r g = 50 , i as = 100a, v gs =10v. i sd 100a, di/dt 1307a/ s, v dd v (br)dss , t j 175c. pulse width 400 s; duty cycle 2%. c oss eff. (tr) is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss . c oss eff. (er) is a fixed capacitance that gives the same energy as c oss while v ds is rising from 0 to 80% v dss . limited by t jmax starting t j = 25c, l= 1mh, r g = 50 , i as = 47a, v gs =10v. halogen -free since april 30, 2014 absolute maximum ratings symbol parameter units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 100c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 25c continuous drain current, v gs @ 10v (wire bond limited) i dm pulsed drain current p d @t c = 25c maximum power dissipation w linear derating factor w/c v gs gate-to-source voltage v dv/dt peak diode recovery v/ns t j operating junction and t st g storage temperature range soldering temperature, for 10 seconds (1.6mm from case) mounting torque, 6-32 or m3 screw avalanche characteristics e as (thermally limited) single pulse avalanche energy e as (thermally limited) single pulse avalanche energy i ar avalanche current a e ar repetitive avalanche energy mj thermal resistance symbol parameter typ. max. units r jc junction-to-case CCC 0.51 r cs case-to-sink, flat greased surface 0.50 CCC r ja junction-to-ambient CCC 62 see fig. 14, 15 , 22a, 22b a c 300490 294 5.0 10lbf in (1.1n m) mj c/w max. 317 224 1270 195 1098 -55 to + 175 20 1.96 static @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 40 CCC CCC v v (br)dss / t j breakdown voltage temp. coefficient CCC 0.032 CCC v/c r ds(on) static drain-to-source on-resistance CCC 1.25 1.6 m 1.8 CCC m v gs(th) gate threshold voltage 2.2 3.0 3.9 v i dss drain-to-source leakage current CCC CCC 1.0 CCC CCC 150 i gss gate-to-source forward leakage CCC CCC 100 gate-to-source reverse leakage CCC CCC -100 r g internal gate resistance CCC 2.1 CCC a na v ds = 40v, v gs = 0v v ds = 40v, v gs = 0v, t j = 125c v gs = 20v v gs = -20v conditions v gs = 0v, i d = 250 a reference to 25c, i d = 5ma v gs = 10v, i d = 100a v gs = 6.0v, i d = 50a v ds = v gs , i d = 250 a downloaded from: http:/// s d g dynamic @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units gfs forward transconductance 211 CCC CCC s q g total gate charge CCC 216 324 q gs gate-to-source charge CCC 51 CCC q gd gate-to-drain ("miller") charge CCC 77 CCC q sync total gate charge sync. (q g - q gd ) CCC 139 CCC t d(on) turn-on delay time CCC 24 CCC t r rise time CCC 68 CCC t d(off) turn-off delay time CCC 115 CCC t f fall time CCC 68 CCC c is s input capacitance CCC 10820 CCC c os s output capacitance CCC 1540 CCC c rss reverse transfer capacitance CCC 1140 CCC c os s eff. (er) effective output capacitance (energy related) CCC 1880 CCC c os s eff. (tr) effective output capacitance (time related) CCC 2208 CCC diode characteristics symbol parameter min. typ. max. units i s continuous source current (body diode) i sm pulsed source current (body diode) v sd diode forward voltage CCC 0.9 1.3 v dv/dt peak diode recovery CCC 5.0 CCC v/ns t rr reverse recovery time CCC 38 CCC t j = 25c v r = 34v, CCC 37 CCC t j = 125c i f = 100a q rr reverse recovery charge CCC 50 CCC t j = 25c di/dt = 100a/ s CCC 50 CCC t j = 125c i rrm reverse recovery current CCC 1.9 CCC a t j = 25c a ns nc 317 CCCCCC CCC CCC 1270 nc nspf v ds = 25v ? = 1.0 mhz, see fig. 5 v gs = 0v, v ds = 0v to 32v , see fig. 12 v gs = 0v, v ds = 0v to 32v p-n junction diode. mosfet symbol showing the i d = 30a r g = 2.7 conditions v gs = 10v v gs = 0v t j = 175c, i s = 100a, v ds = 40v conditions v ds = 10v, i d = 100a i d = 100a v ds =20v v gs = 10v v dd = 20v i d = 100a, v ds =0v, v gs = 10v t j = 25c, i s = 100a, v gs = 0v integral reverse downloaded from: http:/// fig 3. typical output characteristics fig 5. typical transfer characteristics fig 6. normalized on-resistance vs. temperature fig 4. typical output characteristics fig 8. typical gate charge vs. gate-to-source voltage fig 7. typical capacitance vs. drain-to-source voltage 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 60 s pulse width tj = 25c 4.5v 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 4.5v 60 s pulse width tj = 175c vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 2 4 6 8 10 v gs , gate-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 175c v ds = 10v 60 s pulse width -60 -20 20 60 100 140 180 t j , junction temperature (c) 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 100a v gs = 10v 0 50 100 150 200 250 300 q g , total gate charge (nc) 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 32v v ds = 20v i d = 100a 0.1 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 100000 1000000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss downloaded from: http:/// fig 10. maximum safe operating area fig 11. drain-to-source breakdown voltage fig 9. typical source-drain diode forward voltage fig 12. typical c oss stored energy fig 13. typical on-resistance vs. drain current 0.0 0.5 1.0 1.5 2.0 2.5 v sd , source-to-drain voltage (v) 0.1 1 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 10msec 1msec operation in this area limited by r ds (on) 100 sec dc limited by package 0 100 200 300 400 500 i d , drain current (a) 0.0 5.0 10.0 15.0 20.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ) vgs = 7.0v vgs = 8.0v vgs = 10v v gs = 6.0v v gs = 5.5v -60 -20 20 60 100 140 180 t j , temperature ( c ) 40 41 42 43 44 45 46 47 48 49 50 v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e ( v ) id = 5.0ma 0 5 10 15 20 25 30 35 40 45 v ds, drain-to-source voltage (v) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 e n e r g y ( j ) v ds = 0v to 32v downloaded from: http:/// ! fig 13. maximum effective transient thermal impedance, junction-to-case fig 14. typical avalanche current vs.pulsewidth fig 15. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 14, 15:(for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far inexcess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 22a, 22b.4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 14, 15).t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figures 13) p d (ave) = 1/2 ( 1.3bvi av ) = t/ z thjc i av = 2 t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.0001 0.001 0.01 0.1 1 t h e r m a l r e s p o n s e ( z t h j c ) c / w 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) allowed avalanche current vs avalanche pulsewidth, tav, assuming ? j = 25c and tstart = 150c. allowed avalanche current vs avalanche pulsewidth, tav, assuming tj = 150c and tstart =25c (single pulse) 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 100 200 300 400 500 600 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1.0% duty cycle i d = 100a downloaded from: http:/// " #$%& '%(' ) fig 16. threshold voltage vs. temperature #$%& (*' ) #$%& '%(' ) #$%& (*' ) -75 -25 25 75 125 175 225 t j , temperature ( c ) 0.5 1.5 2.5 3.5 4.5 v g s ( t h ) , g a t e t h r e s h o l d v o l t a g e ( v ) id = 250 a id = 1.0ma id = 1.0a 0 200 400 600 800 1000 di f /dt (a/ s) 0 2 4 6 8 10 i r r m ( a ) i f = 60a v r = 34v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 0 2 4 6 8 10 i r r m ( a ) i f = 100a v r = 34v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 40 60 80 100 120 140 160 180 200 220 240 q r r ( n c ) i f = 60a v r = 34v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 0 40 80 120 160 200 q r r ( n c ) i f = 100a v r = 34v t j = 25c t j = 125c downloaded from: http:/// + fig 23a. switching time test circuit fig 23b. switching time waveforms fig 22b. unclamped inductive waveforms fig 22a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 24a. gate charge test circuit fig 24b. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr fig 21. , '%')$( for n-channel hexfet power mosfets ? ? ? p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-appliedvoltage reverserecovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period - ! "#! $ %&$'('& - + - + + + - - - ! ? ! ? "#$## ? % && ? #$##'$ d.u.t. v ds i d i g 3ma v gs .3 f 50k .2 f 12v current regulator same type as d.u.t. current sampling resistors + - v ds 90%10% v gs t d(on) t r t d(off) t f ! ( ) 1 * % 0.1 % ! () ! + - ! ! downloaded from: http:/// . to-220ab packages are not recommended for surface mount application. downloaded from: http:/// ir world headquarters: 101 n. sepulveda blvd., el segundo, california 90245, usa to contact international rectifier, please visit http://www.irf.com/whoto-call/ / 0 12 &2)) )& # )%) //3&& ' 455( & qualification level moisture sensitivity level to-220 not applicable rohs compliant (per jedec jesd47f ?? guidelines) yes qualification information ? industrial revision history date comment ? updated data sheet with ir corporate template. ? updated package outline and part marking on page 9. ? added bullet point in the benefits "rohs compliant, halogen -free" on page 1. ? updated e as (l =1mh) = 1098mj on page 2 ? updated note 9 limited by t jmax , starting t j = 25c, l = 1mh, r g = 50 , i as = 47a, v gs =10v. on page 2 4/22/2014 11/18/2014 downloaded from: http:/// |
Price & Availability of IRFB7434 |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |