Part Number Hot Search : 
MAX40 P6KE530A FCD12 HE80170L NTE5262A 120SC ST23YR8 AB1070B
Product Description
Full Text Search
 

To Download HMC8325 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  71 ghz to 86 ghz, e - band low noise amplifier data sheet HMC8325 rev. 0 document feedback information furnished by analog devices is believed to be accurate and reliable. however, no responsibility is assumed b y analog devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. specifications subject to change without notice. no license is granted by implication or otherwise under any patent or patent rights of analog devices. trademarks and registered trademarks are the property of their respective owners. one technology way, p.o. box 9106, norwood, ma 02062 - 9106, u.s.a. tel: 781.329.4700 ? 2017 analog devices, inc. al l rights reserved. technical support www.analog.com features gain: 21 db typical noise figure: 3. 6 db typical output power for 1 db compression: 13 dbm typical input third - order intercept at maximum gain : 1 dbm typical output third - order intercept at maximum gain : 22 dbm typical saturated output power: 17 dbm typical input return loss: 15 db typical output return loss: 17 db typical die size: 2.844 mm 0.999 mm 0.05 mm applications e - band communication systems high ca pacity wireless backhauls test and measurement general description the HMC8325 is an integrated e - band gallium arsenide (gaas), monolithic microwave integrated circuit (mmic) , low noise amplifier (l na) chip that operates from 71 ghz to 86 ghz . the HMC8325 provides 21 db of gain, 13 dbm of output p1db, 22 dbm of o ip3, and 17 dbm of p sat while requiring only 50 ma from a 3 v power supply. the HMC8325 exhibits excellent linearity and is optimized for e - band communications and high capacity , wireless backhaul radio systems. all data is taken with the chip in a 50 ? test fixture connected via a 3 mil wide 0.5 mil thick 7 mil long ribbon on each port. functional block dia gram rf out rf in v g1 v d1 v d2 v g2 v d3 v g3 v d4 v g4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 14692-001 HMC8325 figure 1.
HMC8325 data sheet rev. 0 | page 2 of 16 table of contents features .............................................................................................. 1 applications ....................................................................................... 1 general descript ion ......................................................................... 1 functional block diagram .............................................................. 1 revision history ............................................................................... 2 specifications ..................................................................................... 3 absolute maximum ratings ............................................................ 4 ther mal resistance ...................................................................... 4 esd caution .................................................................................. 4 pin configuration and function descriptions ............................. 5 interface schematics ..................................................................... 5 typical performance characteristics ..............................................6 theory of operation ...................................................................... 12 application information ................................................................ 13 mounting and bonding techniques for millimeterwave gaas mmics ......................................................................................... 14 handling precautions ................................................................ 14 mounting ..................................................................................... 14 wire bonding .............................................................................. 14 assembly diagram ..................................................................... 15 outline dimensions ....................................................................... 16 ordering guide .......................................................................... 16 revision history 2 / 20 1 7 revision 0 : initial version
data sheet HMC8325 rev. 0 | page 3 of 16 specifications t a = 25c, v d x (v d 1 and v d 2 to v d 3 and v d 4 ) = 3 v, unless otherwise noted. table 1 . parameter min typ max unit operating conditions r adio frequency (rf) range 71 8 6 ghz performance gain 1 9 .5 21 db gain variation over temperature 0.02 db/c output power for 1 db compression (p1db) 13 dbm saturated output power (p sat ) 17 dbm input third - order intercept (iip3) at maximum gain 1 1 dbm output third - order intercept (oip3) at maximum gain 1 22 dbm noise figure 3. 6 4.5 db return loss input 15 db output 17 db power supply total drain current (i d x ) 2 50 ma 1 data taken at power output (p out ) = 5 dbm/tone, 1 mhz spacing. 2 a djust v g1 and v g 2 to v g3 and v g4 from ?2 v to 0 v to achiev e a total drain current (i dx ) = 50 ma.
HMC8325 data sheet rev. 0 | page 4 of 16 absolute maximum ratings table 2 . parameter rating drain bias voltage (v d1 to v d 4 ) 4.5 v gate bias voltage (v g1 to v g 4 ) ?3 v to 0 v maximum junction temperature (to maintain 1 million hours mean time to failure (mttf)) 175c storage temperature range ?65c to +150c operating temperature range ?55c to +85c esd sensitivity , human body model (hbm) class 0 (150 v) stresses at or above those listed under absolute maximum ratings may cause permanent damage to the product. this is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. operation beyond the maximum operating conditions for extende d periods may affect product reliability. thermal resistance thermal performance is directly linked to printed circuit board (pcb) design and operating environment. careful attention to pcb thermal design is required. table 3 . the rmal resistance package type jc 1 unit c -22-1 2 225 c/w 1 based on ablebond? 84 - 1lmit as die attach epoxy. 2 test condition: thermal impedance simulated values are based on jedec 2s2p thermal test board with four thermal vias. see jedec jesd51. esd caution
data sheet HMC8325 rev. 0 | page 5 of 16 pin configuration an d function descripti ons rf out rf in v g1 v d1 v d2 v g2 v d3 v g3 v d4 v g4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd 14692-002 HMC8325 figure 2. pin configuration table 4 . pin function descriptions pa o. nemonic description 1, 3, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 gnd ground connection. 2 rf in rf input. a c couple rf in and match it to 50 ?. 5, 9, 13, 17 v g1 to v g4 gate bias voltage for the low noise amplifier . 7, 11, 15, 19 v d1 to v d4 drain bias voltage for the low noise amplifier. 21 rf out rf output. a c couple rf out and match it to 50 ?. die bottom gnd ground. die bottom must be connected to the rf/dc ground. interface schematics gnd 14692-003 figure 3 . gnd interface schematic rf in 14692-004 figure 4 . rf in interface schematic v g1 , v g2 , v g3 , v g4 14692-005 figure 5. v g1 to v g4 interface schematic v d1 , v d2 , v d3 , v d4 14692-006 figure 6. v d1 to v d4 interface schematic rf out 14692-007 figure 7 . rf out interface schematic
HMC8325 data sheet rev. 0 | page 6 of 16 typical performance characteristics 30 ?30 65 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 gain and return loss (db) frequency (ghz) ?25 ?20 ?15 ?10 ?5 0 5 10 15 20 25 gain input return loss output return loss 14692-008 figure 8 . gain and return loss vs. frequency, v dx = 3 v , i dx = 57 ma 20 0 71 86 output p1db (dbm) frequency (ghz) t a = +85c t a = +25c t a = ?55c 2 4 6 8 10 12 14 16 18 72 73 74 75 76 77 78 79 80 81 82 83 84 85 14692-009 figure 9 . output p1db vs. frequency over temperature, v dx = 3 v , i dx = 50 ma 10 ?10 71 86 input ip3 (dbm) frequency (ghz) t a = +85c t a = +25c t a = ?55c 72 73 74 75 76 77 78 79 80 81 82 83 84 85 ?8 ?6 ?4 ?2 0 2 4 6 8 14692-010 figure 10 . input third - o rder intercept (ip3) vs . frequency over temperatures, p out = 5 dbm/tone , v dx = 3 v , i dx = 50 ma 10 0 71 86 noise figure (db) frequency (ghz) t a = +85c t a = +25c t a = ?55c 72 73 74 75 76 77 78 79 80 81 82 83 84 85 1 2 3 4 5 6 7 8 9 14692-0 1 1 figure 11 . noise figure vs. frequency over temperature, v dx = 3 v , i dx = 50 ma 20 10 71 86 p sat (dbm) frequency (ghz) t a = +85c t a = +25c t a = ?55c 72 73 74 75 76 77 78 79 80 81 82 83 84 85 11 12 13 14 15 16 17 18 19 14692-012 figure 12 . saturated output power ( p sat ) vs. frequency over temperature, v dx = 3 v , i dx = 50 ma ?40 ?66 reverse isolation (db) ?64 ?62 ?60 ?58 ?56 ?54 ?52 ?50 ?48 ?46 ?44 ?42 71 86 frequency (ghz) t a = +85c t a = +25c t a = ?55c 72 73 74 75 76 77 78 79 80 81 82 83 84 85 14692-013 figure 13 . reverse isolation vs. frequency over temperature, v dx = 3 v , i dx = 57 ma
data sheet HMC8325 rev. 0 | page 7 of 16 30 10 71 86 gain (db) frequency (ghz) t a = +85c t a = +25c t a = ?55c 72 73 74 75 76 77 78 79 80 81 82 83 84 85 12 14 16 18 20 22 24 26 28 14692-014 figure 14 . gain vs. frequency over temperature, v d x = 3 v , i d x = 5 7 ma 30 0 gain (db) i d3 /i d4 = 1.5ma i d3 /i d4 = 3.0ma i d3 /i d4 = 5.0ma i d3 /i d4 = 10.0ma i d3 /i d4 = 15.0ma i d3 /i d4 = 20.0ma i d3 /i d4 = 25.0ma i d3 /i d4 = 30.0ma 2 4 6 8 10 12 14 16 18 20 22 24 26 28 71 86 frequency (ghz) 72 73 74 75 76 77 78 79 80 81 82 83 84 85 14692-015 figure 15 . gain vs. frequency over drain current , v d x = 3 v , v g1 and v g2 fixed at 2 0 ma, v g 3 and v g4 s wept 30 0 gain (db) i d3 /i d4 = 3.0ma i d3 /i d4 = 5.0ma i d3 /i d4 = 10.0ma i d3 /i d4 = 15.0ma i d3 /i d4 = 20.0ma i d3 /i d4 = 25.0ma i d3 /i d4 = 30.0ma i d3 /i d4 = 35.0ma i d3 /i d4 = 40.0ma i d3 /i d4 = 44.0ma 2 4 6 8 10 12 14 16 18 20 22 24 26 28 71 86 frequency (ghz) 72 73 74 75 76 77 78 79 80 81 82 83 84 85 14692-016 figure 16 . gain vs. frequency over drain current , v d1 and v d2 = 2 v , v d3 and v d4 = 4 v 30 10 71 86 gain (db) frequency (ghz) t a = +85c t a = +25c t a = ?55c 72 73 74 75 76 77 78 79 80 81 82 83 84 85 12 14 16 18 20 22 24 26 28 14692-017 figure 17 . gain vs. frequency over temperature, v d x = 4 v , i dx = 5 7 ma 30 0 gain (db) 2 4 6 8 10 12 14 16 18 20 22 24 26 28 71 86 frequency (ghz) 72 73 74 75 76 77 78 79 80 81 82 83 84 85 i d3 /i d4 = 1.5ma i d3 /i d4 = 3.0ma i d3 /i d4 = 5.0ma i d3 /i d4 = 10.0ma i d3 /i d4 = 15.0ma i d3 /i d4 = 20.0ma i d3 /i d4 = 25.0ma i d3 /i d4 = 30.0ma 14692-018 figure 18 . gain vs. frequency over drain current , v d x = 4 v , v g1 and v g2 fixed at 2 0 ma, v g3 and v g4 s wept ?40 ?70 reverse isolation (db) 71 86 frequency (ghz) 72 73 74 75 76 77 78 79 80 81 82 83 84 85 t a = +85c t a = +25c t a = ?55c ?68 ?66 ?64 ?62 ?60 ?58 ?56 ?54 ?52 ?50 ?48 ?46 ?44 ?42 14692-019 figure 19 . reverse isolation vs. frequency over temperature, v dx = 4 v, i dx = 57 ma
HMC8325 data sheet rev. 0 | page 8 of 16 0 ?40 ?30 ?15 ?5 ?20 ?35 ?25 ?10 input return loss (db) 71 86 frequency (ghz) 72 73 74 75 76 77 78 79 80 81 82 83 84 85 t a = +85c t a = +25c t a = ?55c 14692-020 figure 20 . input return loss vs. f requency over temperature , v dx = 3 v, i dx = 57 ma 0 ?30 output return loss (db) 71 86 frequency (ghz) 72 73 74 75 76 77 78 79 80 81 82 83 84 85 t a = +85c t a = +25c t a = ?55c ?28 ?26 ?24 ?22 ?20 ?18 ?16 ?14 ?12 ?10 ?8 ?6 ?4 ?2 14692-021 figure 21 . output return loss vs. f requency o ver temperature, v dx = 3 v , i dx = 57 ma 10 0 71 86 noise figure (db) frequency (ghz) t a = +85c t a = +25c t a = ?55c 72 73 74 75 76 77 78 79 80 81 82 83 84 85 1 2 3 4 5 6 7 8 9 14692-022 figure 22 . noise figure vs. frequency over temperature, v d x = 4 v, i dx = 50 ma 0 ?40 ?30 ?15 ?5 ?20 ?35 ?25 ?10 input return loss (db) 71 86 frequency (ghz) 72 73 74 75 76 77 78 79 80 81 82 83 84 85 t a = +85c t a = +25c t a = ?55c 14692-023 figure 23 . input return loss vs. frequency over temperature, v dx = 4 v , i dx = 57 ma 0 ?30 output return loss (db) 71 86 frequency (ghz) 72 73 74 75 76 77 78 79 80 81 82 83 84 85 t a = +85c t a = +25c t a = ?55c ?28 ?26 ?24 ?22 ?20 ?18 ?16 ?14 ?12 ?10 ?8 ?6 ?4 ?2 14692-024 figure 24 . output return loss vs. frequency over temperature, v dx = 4 v , i dx = 57 ma 10 0 71 86 noise figure (db) frequency (ghz) 72 73 74 75 76 77 78 79 80 81 82 83 84 85 1 2 3 4 5 6 7 8 9 i d3 /i d4 = 1.5ma i d3 /i d4 = 3.0ma i d3 /i d4 = 5.0ma i d3 /i d4 = 10.0ma i d3 /i d4 = 15.0ma i d3 /i d4 = 20.0ma i d3 /i d4 = 25.0ma i d3 /i d4 = 30.0ma 14692-025 figure 25 . noise figure v s. frequency over drain current , v d x = 3 v, v g1 and v g2 fixed at 2 0 ma, v g3 and v g4 s wept
data sheet HMC8325 rev. 0 | page 9 of 16 10 0 71 86 noise figure (db) frequency (ghz) 72 73 74 75 76 77 78 79 80 81 82 83 84 85 1 2 3 4 5 6 7 8 9 i d3 /i d4 = 1.5ma i d3 /i d4 = 3.0ma i d3 /i d4 = 5.0ma i d3 /i d4 = 10.0ma i d3 /i d4 = 15.0ma i d3 /i d4 = 20.0ma i d3 /i d4 = 25.0ma i d3 /i d4 = 30.0ma 14692-026 figure 26 . noise figure v s. frequency over drain current , v d x = 4 v, v g1 and v g2 fixed at 2 0 ma, v g3 and v g4 s wept 20 0 71 86 output p1db (dbm) frequency (ghz) t a = +85c t a = +25c t a = ?55c 72 73 74 75 76 77 78 79 80 81 82 83 84 85 2 4 6 8 10 12 14 16 18 14692-027 figure 27 . output p1db vs. frequency over temperature, v dx = 4 v, i dx = 5 0 ma 20 0 71 86 output p1db (dbm) frequency (ghz) 72 73 74 75 76 77 78 79 80 81 82 83 84 85 2 4 6 8 10 12 14 16 18 i d3 /i d4 = 3.0ma i d3 /i d4 = 5.0ma i d3 /i d4 = 10.0ma i d3 /i d4 = 15.0ma i d3 /i d4 = 20.0ma i d3 /i d4 = 25.0ma i d3 /i d4 = 30.0ma 14692-028 figure 28 . output p1db vs. frequency over drain current, v dx = 3 v, v g1 and v g2 fixed at 2 0 ma, v g3 and v g4 s wept 10 8 6 4 2 0 noise figure (db) i d3 /i d4 = 3.0ma i d3 /i d4 = 5.0ma i d3 /i d4 = 10.0ma i d3 /i d4 = 15.0ma i d3 /i d4 = 20.0ma i d3 /i d4 = 25.0ma i d3 /i d4 = 30.0ma i d3 /i d4 = 35.0ma i d3 /i d4 = 40.0ma i d3 /i d4 = 44.0ma 71 86 frequency (ghz) 72 73 74 75 76 77 78 79 80 81 82 83 84 85 14692-029 figure 29 . noise figure vs. frequency over drain current, v d1 and v d2 = 2 v, v d3 and v d4 = 4 v 20 10 71 86 p sat (dbm) frequency (ghz) t a = +85c t a = +25c t a = ?55c 72 73 74 75 76 77 78 79 80 81 82 83 84 85 11 12 13 14 15 16 17 18 19 14692-030 figure 30 . saturated output power (p sat ) vs. frequency over temperature, v dx = 4 v, i dx = 50 ma 20 10 71 86 p sat (dbm) frequency (ghz) 72 73 74 75 76 77 78 79 80 81 82 83 84 85 11 12 13 14 15 16 17 18 19 i d3 /i d4 = 3.0ma i d3 /i d4 = 5.0ma i d3 /i d4 = 10.0ma i d3 /i d4 = 15.0ma i d3 /i d4 = 20.0ma i d3 /i d4 = 25.0ma i d3 /i d4 = 30.0ma 14692-031 figure 31 . saturated output power (p sat ) vs. frequency over drain current, v dx = 3 v, v g1 and v g2 fixed at 2 0 ma, v g3 and v g4 s wept
HMC8325 data sheet rev. 0 | page 10 of 16 20 0 71 86 output p1db (dbm) frequency (ghz) 72 73 74 75 76 77 78 79 80 81 82 83 84 85 2 4 6 8 10 12 14 16 18 i d3 /i d4 = 3.0ma i d3 /i d4 = 5.0ma i d3 /i d4 = 10.0ma i d3 /i d4 = 15.0ma i d3 /i d4 = 20.0ma i d3 /i d4 = 25.0ma i d3 /i d4 = 30.0ma 14692-032 figure 32 . output p1db vs. frequency over drain current, v dx = 4 v, v g1 and v g2 fixed at 2 0 ma, v g3 and v g4 s wept 20 0 71 86 output p1db (dbm) frequency (ghz) 72 73 74 75 76 77 78 79 80 81 82 83 84 85 2 4 6 8 10 12 14 16 18 i d3 /i d4 = 5.0ma i d3 /i d4 = 10.0ma i d3 /i d4 = 15.0ma i d3 /i d4 = 20.0ma i d3 /i d4 = 25.0ma i d3 /i d4 = 30.0ma i d3 /i d4 = 35.0ma i d3 /i d4 = 40.0ma i d3 /i d4 = 44.0ma 14692-033 figure 33 . output p1db vs. frequency over drain current, v d1 and v d2 = 2 v, v d3 and v d4 = 4 v 10 ?10 71 86 input ip3 (dbm) frequency (ghz) 72 73 74 75 76 77 78 79 80 81 82 83 84 85 t a = +85c t a = +25c t a = ?55c ?8 ?6 ?4 ?2 0 2 4 6 8 14692-034 figure 34 . input third - o rder intercept (ip3) vs. frequency over temperature, v dx = 4 v, i dx = 50 ma 20 10 71 86 p sat (dbm) frequency (ghz) 72 73 74 75 76 77 78 79 80 81 82 83 84 85 11 12 13 14 15 16 17 18 19 i d3 /i d4 = 3.0ma i d3 /i d4 = 5.0ma i d3 /i d4 = 10.0ma i d3 /i d4 = 15.0ma i d3 /i d4 = 20.0ma i d3 /i d4 = 25.0ma i d3 /i d4 = 30.0ma 14692-035 figure 35 . saturated output power (p sat ) vs. frequency over drain current, v dx = 4 v, v g1 and v g2 fixed at 2 0 ma, v g3 and v g4 s wept 20 10 71 86 p sat (dbm) frequency (ghz) 72 73 74 75 76 77 78 79 80 81 82 83 84 85 11 12 13 14 15 16 17 18 19 i d3 /i d4 = 5.0ma i d3 /i d4 = 10.0ma i d3 /i d4 = 15.0ma i d3 /i d4 = 20.0ma i d3 /i d4 = 25.0ma i d3 /i d4 = 30.0ma i d3 /i d4 = 35.0ma i d3 /i d4 = 40.0ma i d3 /i d4 = 44.0ma 14692-036 figure 36 . saturated output power (p sat ) vs. frequency over drain current, v d1 and v d2 = 2 v, v d3 and v d4 = 4 v 30 10 71 86 output ip3 (dbm) frequency (ghz) t a = +85c t a = +25c t a = ?55c 72 73 74 75 76 77 78 79 80 81 82 83 84 85 12 14 16 18 20 22 24 26 28 14692-037 figure 37 . output third - o rder intercept (ip3) vs. frequency over temperature, v dx = 4 v, i dx = 50 ma
data sheet HMC8325 rev. 0 | page 11 of 16 20 ?10 input ip3 (dbm) 71 86 frequency (ghz) 72 73 74 75 76 77 78 79 80 81 82 83 84 85 ?8 ?6 ?4 ?2 0 2 4 6 8 10 12 14 16 18 i d3 /i d4 = 3.0ma i d3 /i d4 = 5.0ma i d3 /i d4 = 10.0ma i d3 /i d4 = 15.0ma i d3 /i d4 = 20.0ma i d3 /i d4 = 25.0ma i d3 /i d4 = 30.0ma 14692-038 figure 38 . input third - o rder intercept (ip3) vs. frequency over drain current, v dx = 3 v, v g1 and v g2 fixed at 2 0 ma, v g3 and v g4 s wept 20 ?10 input ip3 (dbm) 71 86 frequency (ghz) 72 73 74 75 76 77 78 79 80 81 82 83 84 85 ?8 ?6 ?4 ?2 0 2 4 6 8 10 12 14 16 18 i d3 /i d4 = 3.0ma i d3 /i d4 = 5.0ma i d3 /i d4 = 10.0ma i d3 /i d4 = 15.0ma i d3 /i d4 = 20.0ma i d3 /i d4 = 25.0ma i d3 /i d4 = 30.0ma 14692-039 figure 39 . input third - o rder intercept (ip3) vs. frequency over drain current, v dx = 4 v, v g1 and v g2 fixed at 2 0 ma, v g3 and v g4 s wept 20 ?10 input ip3 (dbm) 71 86 frequency (ghz) 72 73 74 75 76 77 78 79 80 81 82 83 84 85 ?8 ?6 ?4 ?2 0 2 4 6 8 10 12 14 16 18 i d3 /i d4 = 5.0ma i d3 /i d4 = 10.0ma i d3 /i d4 = 15.0ma i d3 /i d4 = 20.0ma i d3 /i d4 = 25.0ma i d3 /i d4 = 30.0ma i d3 /i d4 = 35.0ma i d3 /i d4 = 40.0ma i d3 /i d4 = 44.0ma 14692-040 figure 40 . input third - o rder intercept (ip3) vs. frequency over d rain current, v d1 and v d2 = 2 v, v d3 and v d4 = 4 v 30 10 71 86 output ip3 (dbm) frequency (ghz) 72 73 74 75 76 77 78 79 80 81 82 83 84 85 12 14 16 18 20 22 24 26 28 i d3 /i d4 = 3.0ma i d3 /i d4 = 5.0ma i d3 /i d4 = 10.0ma i d3 /i d4 = 15.0ma i d3 /i d4 = 20.0ma i d3 /i d4 = 25.0ma i d3 /i d4 = 30.0ma 14692-041 figure 41 . output third - o rder intercept (ip3) vs. frequency over drain current, v dx = 3 v, v g1 and v g2 fixed at 2 0 ma, v g3 and v g4 s wept 30 10 71 86 output ip3 (dbm) frequency (ghz) 72 73 74 75 76 77 78 79 80 81 82 83 84 85 12 14 16 18 20 22 24 26 28 i d3 /i d4 = 3.0ma i d3 /i d4 = 5.0ma i d3 /i d4 = 10.0ma i d3 /i d4 = 15.0ma i d3 /i d4 = 20.0ma i d3 /i d4 = 25.0ma i d3 /i d4 = 30.0ma 14692-042 figure 42 . output third - o rder intercept (ip3) vs. frequency over drain current, v dx = 4 v, v g1 and v g2 fixed at 2 0 ma, v g3 and v g4 s wept 30 10 71 86 output ip3 (dbm) frequency (ghz) 72 73 74 75 76 77 78 79 80 81 82 83 84 85 12 14 16 18 20 22 24 26 28 i d3 /i d4 = 5.0ma i d3 /i d4 = 10.0ma i d3 /i d4 = 15.0ma i d3 /i d4 = 20.0ma i d3 /i d4 = 25.0ma i d3 /i d4 = 30.0ma i d3 /i d4 = 35.0ma i d3 /i d4 = 40.0ma i d3 /i d4 = 44.0ma 14692-043 figure 43 . output third - o rder intercept (ip3) vs. frequency over drain current, v d1 and v d2 = 2 v, v d3 and v d4 = 4 v
HMC8325 data sheet rev. 0 | page 12 of 16 theory of operation the circuit architecture of the HMC8325 low noise amplifier is shown in figure 44. the HMC8325 uses four cascaded gain stages to form an amplifier with a combined gain of 21 db (typical), a noise figure of 3.6 db (typical), and 1 dbm (typical) input ip3 across the 71 ghz to 86 ghz frequency range. stage 1 and stage 2 can be biased separately from stage 3 and stage 4. operating at v d1 = v d2 = 2 v and v d3 = v d4 = 4 v improves gain and noise figure compared to v d1 = v d2 = v d3 = v d4 = 4 v. the input ip3 is slightly lower for the v d1 = v d2 = 2 v and v d3 = v d4 = 4 v case. a compromise bias voltage between the gain noise figure vs. the input ip3 is v d1 = v d2 = v d3 = v d4 = 3 v. gain control can be achieved by down biasing stage 3 and stage 4. by lowering the drain current of i d3 and i d4 , a 12 db reduction in gain can be achieved with a small degradation in the noise figure. refer to figure 45 for further details on biasing arrangements for the different stages. 14692-044 rf out rf in figure 44. circuit architecture
data sheet HMC8325 rev. 0 | page 13 of 16 application informat ion the typical application circuit shown in figure 45 shows the HMC8325 chip with all of its required bypassing components . b ypass all supply connections with adequate bypassing capacitors is recommended . use single - layer chip capacitors with a very high, self - resonant f requency close to the HMC8325 chip. typically , 120 pf chip capacitors are recommended , followed by 0.01 f and 4.7 f s urface - mount capacitors . supply line s can be combined into single drain and single gate bias sources to minimize external component count and simplify power supply routing . the recommended single power supply source is 3 v (v dx = v d1 /v d2 and v d3 /v d4 = 3 v) . alternatively, 2 v and 4 v power supply sources can be used for v d1 /v d2 and v d3 /v d4 , respectively. the HMC8325 uses several amplifier stages. all stages use depletion mode , pseudomorphic high ele ctron mobility transfer (phemt) transistors. therefore, f ollow the following recommended bias sequence during power - up of the devices to ensure that damage does not occur . 1. apply ?2 v bias to v gx ( v g1 and v g2 to v g3 and v g4 ). 2. apply 3 v bias to v dx ( v d1 and v d2 to v d3 and v d4 ). 3. adjust v g1 /v g2 to v g3 /v g4 between ?2 v and 0 v to achieve a total drain current (i dx ) of 50 ma. 4. apply the rf input signal. the recommended bias sequence during power - down of the device is as follows: 1. turn off the rf input signal. 2. turn off the v dx ( v d1 and v d2 to v d3 and v d4 ) voltage supply or set it to 0 v. 3. turn of f the v gx ( v g1 and v g2 to v g3 and v g4 ) voltage supply. rf out rf in v g1 v d1 v d2 v g2 v d3 v g3 v d4 v g4 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 + 0.01f 120pf 4.7f + 0.01f 120pf 4.7f + 0.01f 120pf 4.7f v d1 /v d2 v g1 /v g2 v g3 /v g4 + 0.01f 120pf 4.7f v d3 /v d4 2 21 14692-045 figure 45 . typical application circuit (two power supply source configuration)
HMC8325 data sheet rev. 0 | page 14 of 16 mounting and bonding techniques for millimeterwave gaas mmics attach the die directly to the ground plane eutectically or with conductive epoxy. to bring rf to and from the chip, use 50 microstrip transmission lines on 0.127 mm (0.005) thick, alumina thin film substrates (see figure 46). rf ground plane 0.05mm (0.002") thick gaas mmic ribbon bond 0.127mm (0.005") thick alumina thin film substrate 0.076mm (0.003") 14692-046 figure 46. routing rf signals to minimize bond wire length, place microstrip substrates as close to the die as possible. typical die to substrate spacing is 0.076 mm to 0.152 mm (0.003 to 0.006). handling precautions to avoid permanent damage, adhere to the following storage, cleanliness, static sensitivity, transient, and general handling precautions. storage all bare die ship in either waffle or gel-based esd protective containers, sealed in an esd protective bag. after opening the sealed esd protective bag, all die must be stored in a dry nitrogen environment. cleanliness handle the chips in a clean environment. never use liquid cleaning systems to clean the chip. static sensitivity follow esd precautions to protect against esd strikes. transients suppress instrument and bias supply transients while bias is applied. to minimize inductive pickup, use shielded signal and bias cables. general handling handle the chip on the edges only using a vacuum collet or with a sharp pair of bent tweezers. because the surface of the chip has fragile air bridges, never touch the surface of the chip with a vacuum collet, tweezers, or fingers. mounting the chip is back metallized and can be die mounted with gold/tin (ausn) eutectic preforms or with electrically conductive epoxy. the mounting surface must be clean and flat. eutectic die attach it is best to use an 80% gold/20% tin preform with a work surface temperature of 255c and a tool temperature of 265c. when hot 90% nitrogen/10% hydrogen gas is applied, maintain a tool tip temperature of 290c. do not expose the chip to a temperature greater than 320c for more than 20 sec. no more than 3 sec of scrubbing is required for attachment. epoxy die attach the ablebond 84-1lmit is recommended for die attachment. apply a minimum amount of epoxy to the mounting surface so that a thin epoxy fillet is observed around the perimeter of the chip after placing it into position. cure the epoxy per the schedule provided by the manufacturer. wire bonding rf bonds made with 3 mil (0 .0762 mm) 0.5 mil (0.0127 mm) gold ribbon are recommended. thermosonically bond these bonds with a force of 40 grams to 60 grams. dc bonds of 1 mil (0.0254 mm) diameter, thermosonically bonded, are recommended. create ball bonds with a force of 40 grams to 50 grams and wedge bonds with a force of 18 grams to 22 grams. create all bonds with a nominal stage temperature of 150c. apply a minimum amount of ultrasonic energy to achieve reliable bonds. keep all bonds as short as possible, less than 12 mil (0.31 mm).
data sheet HMC8325 rev. 0 | page 15 of 16 assembly diagram 3mil nominal gap 50 transmission line 0.01f 0.5mil thick 7.0mil long gold ribbon (wedge bond) 120pf v g1 t o v g2 v d1 t o v d2 v g3 t o v g4 v d3 t o v d4 14692-047 figure 47 . assembly diagram
HMC8325 data sheet rev. 0 | page 16 of 16 outline dimensions 05-03-2016- a airbridge 0.999 0.466 0.115 0.150 0.150 2.844 2.655 top view (circuit side) 0.130 0.05 side view k7801 adi2015 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 0.130 0.179 0.215 0.133 0.095 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.135 0.148 0.130 0.130 0.196 f igure 48 . 22 - pad bare die [chip] (c- 22 - 1) dimensions shown in millimeters ordering guide model 1 temperature range package description package option 2 HMC8325 ?55c to +85c 22- pad bare die [chip] c- 22 -1 HMC8325 -sx ?55c to +85c 22- pad bare die [chip] c- 22 -1 1 the HMC8325 - sx is two pairs of the die in a gel pack for the sample orders. 2 this is a waffle pack option; contact analog devices , inc. , for additional packaging options. ? 2017 analog devices, inc. all rights reserved. trademarks and registered trademarks are the property of their respective owners. d14692 -0- 2/17(0)


▲Up To Search▲   

 
Price & Availability of HMC8325

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X