Part Number Hot Search : 
S6D1121 KTA1040 TC0429A AT91S RASH722 MC145537 TM1618 PCP1201
Product Description
Full Text Search
 

To Download MJE16204 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  scanswitch ? npn bipolar power deflection transistor for high and very high resolution monitors the MJE16204 is a stateoftheart switchmode ? bipolar power transistor. it is specifically designed for use in horizontal deflection circuits for 20 mm diameter neck, high and very resolution, full page, monochrome monitors. ? 550 volt collectorbase breakdown capability ? typical dynamic desaturation specified (new turnoff characteristic) ? application specific stateoftheart die design ? isolated or nonisolated to220 type packages ? fast switching: 65 ns inductive fall time (typ) 680 ns inductive storage time (typ) ? low saturation voltage: 0.4 volts at 3.0 amps collector current and 400 ma base drive ? low collectoremitter leakage current e 100 m a max at 550 volts e v ces ? high emitterbase breakdown capability for high voltage off drive circuits e 9.0 volts (min) ? case 221d is ul recognized at 3500 v rms : file #e69369 preferred devices are on semiconductor recommended choices for future use and best overall value. on semiconductor  ? semiconductor components industries, llc, 2001 april, 2001 rev. 2 1 publication order number: MJE16204d MJE16204 power transistors 6.0 amperes 550 volts e v ces 45 and 80 watts case 221a09 to220ab MJE16204
MJE16204 http://onsemi.com 2 ????????????????????????????????? ????????????????????????????????? maximum ratings ????????????????? ????????????????? rating ????? ????? symbol ?????????? ?????????? MJE16204 ???? ???? unit ????????????????? ????????????????? collectoremitter breakdown voltage ????? ????? v ces ?????????? ?????????? 550 ???? ???? vdc ????????????????? ????????????????? collectoremitter sustaining voltage ????? ????? v ceo(sus) ?????????? ?????????? 250 ???? ???? vdc ????????????????? emitterbase voltage ????? v ebo ?????????? 8.0 ???? vdc ????????????????? ? ??????????????? ? ? ??????????????? ? ????????????????? rms isolation voltage(2) per fig. 14 (for 1 sec, t a = 25  c, per fig. 15 rel. humidity < 30%) per fig. 16 ????? ? ??? ? ? ??? ? ????? v isol ?????????? ? ???????? ? ? ???????? ? ?????????? e e e ???? ? ?? ? ? ?? ? ???? v ????????????????? ????????????????? collector current e continuous e pulsed (1) ????? ????? i c i cm ?????????? ?????????? 6.0 8.0 ???? ???? adc ????????????????? ? ??????????????? ? ????????????????? base current e continuous e pulsed (1) ????? ? ??? ? ????? i b i bm ?????????? ? ???????? ? ?????????? 2.0 4.0 ???? ? ?? ? ???? adc ????????????????? ????????????????? repetitive emitterbase avalanche energy ????? ????? w (ber) ?????????? ?????????? 0.2 ???? ???? mj ????????????????? ? ??????????????? ? ????????????????? total power dissipation @ t c = 25  c total power dissipation @ t c = 100  c derated above t c = 25  c ????? ? ??? ? ????? p d ?????????? ? ???????? ? ?????????? 80 32 0.64 ???? ? ?? ? ???? watts w/  c ????????????????? ????????????????? operating and storage temperature range ????? ????? t j , t stg ?????????? ?????????? 55 to 150 ???? ????  c ????????????????????????????????? ????????????????????????????????? thermal characteristics ????????????????? ????????????????? characteristic ????? ????? symbol ?????????? ?????????? max ???? ???? unit ????????????????? ????????????????? thermal resistance e junction to case ????? ????? r q jc ?????????? ?????????? 1.56 ???? ????  c/w ????????????????? ? ??????????????? ? ????????????????? lead temperature for soldering purposes 1/8 from the case for 5 seconds ????? ? ??? ? ????? t l ?????????? ? ???????? ? ?????????? 260 ???? ? ?? ? ????  c (1) pulse test: pulse width = 5.0 ms, duty cycle  10%. (2) proper strike and creepage distance must be provided. *measurement made with thermocouple contacting the bottom insulated mounting surface of the package (in a location beneath the die), the device mounted on a heatsink thermal grease applied, and a mounting torque of 6 to 8 in  lbs.
MJE16204 http://onsemi.com 3 ????????????????????????????????? ????????????????????????????????? electrical characteristics (t c = 25  c unless otherwise noted) ??????????????????? ??????????????????? characteristic ????? ????? symbol ???? ???? min ??? ??? typ ???? ???? max ??? ??? unit ????????????????????????????????? ????????????????????????????????? off characteristics (3) ??????????????????? ? ????????????????? ? ??????????????????? collector cutoff current (v ce = 550 vdc, v be = 0 v) ????? ? ??? ? ????? i ces ???? ? ?? ? ???? e ??? ? ? ? ??? e ???? ? ?? ? ???? 100 ??? ? ? ? ??? m adc ??????????????????? ??????????????????? emitterbase leakage (v eb = 8.0 vdc, i c = 0) ????? ????? i ebo ???? ???? e ??? ??? e ???? ???? 10 ??? ??? m adc ??????????????????? ? ????????????????? ? ??????????????????? emitterbase breakdown voltage (i e = 1.0 ma, i c = 0) ????? ? ??? ? ????? v (br)ebo ???? ? ?? ? ???? 8.0 ??? ? ? ? ??? 11 ???? ? ?? ? ???? e ??? ? ? ? ??? vdc ??????????????????? ? ????????????????? ? ??????????????????? collectoremitter sustaining voltage (table 1) (i c = 10 madc, i b = 0) ????? ? ??? ? ????? v ceo(sus) ???? ? ?? ? ???? 250 ??? ? ? ? ??? 325 ???? ? ?? ? ???? e ??? ? ? ? ??? vdc ????????????????????????????????? ????????????????????????????????? on characteristics (3) ??????????????????? ? ????????????????? ? ??????????????????? collectoremitter saturation voltage (i c = 1.0 adc, i b = 133 madc) (i c = 3.0 adc, i b = 400 madc) ????? ? ??? ? ????? v ce(sat) ???? ? ?? ? ???? e e ??? ? ? ? ??? 0.25 0.4 ???? ? ?? ? ???? 0.6 1.0 ??? ? ? ? ??? vdc ??????????????????? ? ????????????????? ? ??????????????????? baseemitter saturation voltage (i c = 3.0 adc, i b = 400 madc) ????? ? ??? ? ????? v be(sat) ???? ? ?? ? ???? e ??? ? ? ? ??? 0.9 ???? ? ?? ? ???? 1.5 ??? ? ? ? ??? vdc ??????????????????? ??????????????????? dc current gain (ice = 6.0 adc, v ce = 5.0 vdc) ????? ????? h fe ???? ???? 8.0 ??? ??? 14 ???? ???? 20 ??? ??? e ????????????????????????????????? ????????????????????????????????? dynamic characteristics ??????????????????? ??????????????????? dynamic desaturation interval (i c = 3.0 a, i b1 = 400 ma) ????? ????? t ds ???? ???? e ??? ??? 50 ???? ???? e ??? ??? ns ??????????????????? ? ????????????????? ? ??????????????????? output capacitance (v ce = 10 vdc, i e = 0, f test = 100 khz) ????? ? ??? ? ????? c ob ???? ? ?? ? ???? e ??? ? ? ? ??? 90 ???? ? ?? ? ???? 150 ??? ? ? ? ??? pf ??????????????????? ? ????????????????? ? ??????????????????? gain bandwidth product (v ce = 10 vdc, i c = 1.0 a, f test = 1.0 mhz) ????? ? ??? ? ????? f t ???? ? ?? ? ???? 10 ??? ? ? ? ??? e ???? ? ?? ? ???? e ??? ? ? ? ??? mhz ??????????????????? ??????????????????? emitterbase turnoff energy (eb (avalanche) = 500 ns, r be = 22 w ) ????? ????? eb (off) ???? ???? e ??? ??? 6.6 ???? ???? e ??? ??? m j ??????????????????? ? ????????????????? ? ? ????????????????? ? ??????????????????? collectorheatsink capacitance (mounted on a 1 x 2 x 1/16 copper heatsink, v ce = 0, f test = 100 khz) ????? ? ??? ? ? ??? ? ????? c chs ???? ? ?? ? ? ?? ? ???? e ??? ? ? ? ? ? ? ??? 3.0 ???? ? ?? ? ? ?? ? ???? e ??? ? ? ? ? ? ? ??? pf ????????????????????????????????? ????????????????????????????????? switching characteristics ??????????????????? ? ????????????????? ? ??????????????????? inductive load (table 2) (i c = 3.0 a, i b = 400 ma) storage fall time ????? ? ??? ? ????? t sv t fi ???? ? ?? ? ???? e e ??? ? ? ? ??? 680 65 ???? ? ?? ? ???? 1500 150 ??? ? ? ? ??? ns (3) pulse test: pulse width = 300 m s, duty cycle  2.0%.
MJE16204 http://onsemi.com 4 v ce , collector-emitter voltage (volts) figure 1. typical dc current gain i c , collector current (amps) 0.5 2 10 20 h fe , dc current gain 15 3 30 7 0.7 t j = 100 c 25 c -55 c 7 10 5 3 50 v ce = 5 v i c , collector current (amps) figure 2. typical collectoremitter saturation voltage 0.5 3 0.2 5 10 1 0.1 7 0.3 2 0.7 0.5 3 25 0.7 1 0.1 0.2 t j = 25 c t j = 100 c i c /i b1 = 10 0.3 7 60 5 7.5 0.2 c, capacitance (pf) v be , base-emitter voltage (volts) v ce , collector-emitter voltage (volts) figure 3. typical collectoremitter saturation region i b , base current (amps) 0.7 0.1 0.03 0.3 0.3 6 a 0.05 1 2 2 a 3 a i c = 1 a 0.03 0.07 0.1 0.7 0.2 0.5 30 5 10 figure 4. typical baseemitter saturation voltage 0.3 30 0.5 5 0.7 0.1 0.7 20 110 10 2 t j = 25 c 23 57 i c , collector current (amps) t j = 25 c t j = 100 c 0.3 figure 5. typical capacitance 10k v r , reverse voltage (volts) c ib 0.1 1k 100 10 1 10 100 1k 2k 200 20 3k 300 5k 500 50 0.3 2 30 300 20 0.5 5 50 500 f t , transition frequency (mhz) i c , collector current (amps) figure 6. typical transition frequency v ce = 10 v f test = 1 mhz t c = 25 c 0 0.5 1 1.5 2 3 2.5 20 8 2 14 0 6 16 12 0.5 0.07 0.2 0.05 20 3 7 2 1 3 i c /i b1 = 5 to 10 7 1 3 0.5 30 0.2 3 200 t c = 25 c 10 4 18 c ob
MJE16204 http://onsemi.com 5 i c , collector current (amps) v ce , collector-emitter voltage (volts) figure 7. maximum forward biased safe operating area 7 3 10 1 0.02 70 secondary break down wirebond limit thermal limit i c , collector current (amps) 0.1 7 20 250 3 0.3 0.2 d c t c = 25 c 1ms 10 m s 2 5 0.5 50 7 0 150 550 i c /i b1 5 t j 100 c v be(off) = 5 v 50 v ce(pk) , peak collector-emitter voltage (volts) 350 v be(off) = 0 v figure 8. maximum reverse biased safe operating area 3 5 2 1 250 450 0.03 0.07 0.05 0.01 0.7 100 5 10 200 30 MJE16204 6 4 safe operating area safe operating area information forward bias there are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. safe operating area curves indicate i c v ce limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. the data of figure 7 is based on t c = 25  c; t j(pk) is variable depending on power level. second breakdown pulse limits are valid for duty cycles to 10% but must be derated when t c 25  c. second breakdown limitations do not derate the same as thermal limitations. allowable current at the voltages shown on figure 7 may be found at any case temperature by using the appropriate curve on figure 9. at high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. reverse bias for inductive loads, high voltage and high current must be sustained simultaneously during turnoff, in most cases, with the basetoemitter junction reverse biased. under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. this can be accomplished by several means such as active clamping, rc snubbing, load line shaping, etc. t c , case temperature ( c) 0 40 120 160 0.6 power derating factor second break down derating 1 0.8 0.4 0.2 60 100 140 80 thermal derating 2 0 figure 9. power derating the safe level for these devices is specified as reverse biased safe operating area and represents the voltagecurrent condition allowable during reverse biased turnoff. this rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. figure 8 gives the rbsoa characteristics.
MJE16204 http://onsemi.com 6 h.p. 214 or equiv. p.g. 0 -35 v 5 0 50 0 10 0 -v 2n533 7 1 m f +- + - 0.02 m f 20 10 0 +v 11 v 2n619 1 a r b1 r b2 10 m f 0.02 m f t 1 +v 0 v -v a 50 *i b *i c t.u.t . l mr85 6 v clamp v cc i c v ce i b i b1 i b2 i c(pk) v ce(pk) t 1  l coil (i cpk ) v cc t 1 adjusted to obtain i c(pk) v (br)ceo l = 10 mh r b2 = v cc = 20 volts rbsoa l = 200 m h r b2 = 0 v cc = 20 volts r b1 selected for desired i b1 note: adjust  v to obtain desired v be(off) at point a. *tektronix * p6042 or * equivalent table 1. rbsoa/v (br)ceo(sus) test circuit
MJE16204 http://onsemi.com 7 +24 v c1 100 m f + u2 mc7812 v i v o g n d c2 10 m f + q2 mj11016 (ib ) r1 1 k 6.2 v 100 v c3 10 m f + r7 2.7 k r8 9.1 k r9 470 r10 47 c5 0.1 c4 0.005 (dc) r2 r510 r3 250 syn c q 1 bs17 0 r6 1 k 2 1 8 76 g n d o s c v cc %ou t r10 470 1 w q3 mje 15031 r12 470 1 w d1 mur11 0 t 1 r4 22 l b d2 mur46 0 cy v ce q4 dut ly c6 100 m f r5 1 k (ic) q5 mj11016 + t1: ferroxcube pot core #1811 p3c8 primary/sec. turns ratio = 18:6 primary inductance gap: l p = 250 m h lb = 0.5 m h cy = 0.01 m f ly = 13 m h u1 mc1391p table 2. high resolution deflection application simulator
MJE16204 http://onsemi.com 8 i c , collector current (amps) figure 10. typical collector current storage time in deflection circuit simulator t s , storage time (ns) 2k 700 200 300 i c i/ b1 = 7.5 500 1k 12 7 5 3 10 i c , collector current (amps) figure 11. typical collector current fall time in deflection circuit simulator t f , fall time (ns) 100 20 50 200 23 57 110 30 70 t c = 25 c i c i/ b1 = 7.5 10 t c = 25 c figure 12. deflection simulator switching waveforms from circuit in table 2 i c 0% i b v ce t sv v ce = 20 v t fi 10% i c(pk) figure 13. definition of dynamic saturation measurement time (ns) v ce dynamic saturation time is measured from v ce = 1 v to v ce = 5 v t ds 1 4 collector-emitter voltage (volts) 5 0 3 2 0 0 90% i c(pk) dynamic desaturatiion the scanswitch series of bipolar power transistors are specifically designed to meet the unique requirements of horizontal deflection circuits in computer monitor applications. historically, deflection transistor design was focused on minimizing collector current fall time. while fall time is a valid figure of merit, a more important indicator of circuit performance as scan rates are increased is a new characteristic, adynamic desaturation.o in order to assure a linear collector current ramp, the output transistor must remain in hard saturation during storage time and exhibit a rapid turnoff transition. a sluggish transition results in serious consequences. as the saturation voltage of the output transistor increases, the voltage across the yoke drops. roll off in the collector current ramp results in improper beam deflection and distortion of the image at the right edge of the screen. design changes have been made in the structure of the scanswitch series of devices which minimize the dynamic desaturation interval. dynamic desaturation has been defined in terms of the time required for the v ce to rise from 1.0 to 5.0 volts (figures 12 and 13) and typical performance at optimized drive conditions has been specified. optimization of device structure results in a linear collector current ramp, excellent turnoff switching performance, and significantly lower overall power dissipation.
MJE16204 http://onsemi.com 9 t, time (ms) 0.01 0.01 0.05 1 2 5 10 20 50 500 0.1 0.5 0.2 1 0.2 0.1 0.05 r(t), transient thermal r q jc (t) = r(t) r q jc r q jc = 1.56 c/w max d curves apply for power pulse train shown read time at t 1 t j(pk) - t c = p (pk) r q jc (t) p (pk) t 1 t 2 duty cycle, d = t 1 /t 2 single pulse resistance (normalized) figure 14. typical thermal response for MJE16204 0.5 d = 0.5 0.7 0.07 0.02 0.02 100 200 10 k 0.2 0.05 0.1 0.02 0.01
MJE16204 http://onsemi.com 10 package dimensions case 221a09 issue aa to220ab notes: 1. dimensioning and tolerancing per ansi y14.5m, 1982. 2. controlling dimension: inch. 3. dimension z defines a zone where all body and lead irregularities are allowed. dim min max min max millimeters inches a 0.570 0.620 14.48 15.75 b 0.380 0.405 9.66 10.28 c 0.160 0.190 4.07 4.82 d 0.025 0.035 0.64 0.88 f 0.142 0.147 3.61 3.73 g 0.095 0.105 2.42 2.66 h 0.110 0.155 2.80 3.93 j 0.018 0.025 0.46 0.64 k 0.500 0.562 12.70 14.27 l 0.045 0.060 1.15 1.52 n 0.190 0.210 4.83 5.33 q 0.100 0.120 2.54 3.04 r 0.080 0.110 2.04 2.79 s 0.045 0.055 1.15 1.39 t 0.235 0.255 5.97 6.47 u 0.000 0.050 0.00 1.27 v 0.045 --- 1.15 --- z --- 0.080 --- 2.04 b q h z l v g n a k f 123 4 d seating plane t c s t u r j
MJE16204 http://onsemi.com 11 notes
MJE16204 http://onsemi.com 12 on semiconductor and are trademarks of semiconductor components industries, llc (scillc). scillc reserves the right to make changes without further notice to any products herein. scillc makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does scillc assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. atypicalo parameters which may be provided in scill c data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. all operating parameters, including atypicalso must be validated for each customer application by customer's technical experts. scillc does not convey any license under its patent rights nor the rights of others. scillc products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body , or other applications intended to support or sustain life, or for any other application in which the failure of the scillc product could create a sit uation where personal injury or death may occur. should buyer purchase or use scillc products for any such unintended or unauthorized application, buyer shall indemnify and hold scillc and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthori zed use, even if such claim alleges that scillc was negligent regarding the design or manufacture of the part. scillc is an equal opportunity/affirmative action employer. publication ordering information central/south america: spanish phone : 3033087143 (monfri 8:00am to 5:00pm mst) email : onlitspanish@hibbertco.com tollfree from mexico: dial 018002882872 for access then dial 8662979322 asia/pacific : ldc for on semiconductor asia support phone : 13036752121 (tuefri 9:00am to 1:00pm, hong kong time) toll free from hong kong & singapore: 00180044223781 email : onlitasia@hibbertco.com japan : on semiconductor, japan customer focus center 4321 nishigotanda, shinagawaku, tokyo, japan 1410031 phone : 81357402700 email : r14525@onsemi.com on semiconductor website : http://onsemi.com for additional information, please contact your local sales representative. MJE16204d scanswitch is a trademark of semiconductor components industries, llc. north america literature fulfillment : literature distribution center for on semiconductor p.o. box 5163, denver, colorado 80217 usa phone : 3036752175 or 8003443860 toll free usa/canada fax : 3036752176 or 8003443867 toll free usa/canada email : onlit@hibbertco.com fax response line: 3036752167 or 8003443810 toll free usa/canada n. american technical support : 8002829855 toll free usa/canada europe: ldc for on semiconductor european support german phone : (+1) 3033087140 (monfri 2:30pm to 7:00pm cet) email : onlitgerman@hibbertco.com french phone : (+1) 3033087141 (monfri 2:00pm to 7:00pm cet) email : onlitfrench@hibbertco.com english phone : (+1) 3033087142 (monfri 12:00pm to 5:00pm gmt) email : onlit@hibbertco.com european tollfree access*: 0080044223781 *available from germany, france, italy, uk, ireland switchmode is a trademark of semiconductor components industries, llc.


▲Up To Search▲   

 
Price & Availability of MJE16204

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X