Part Number Hot Search : 
11100 06FNT SHD11 M5135 16011 SKIIP31 1N5147 N20J3RS1
Product Description
Full Text Search
 

To Download IRLR3636 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  auIRLR3636 s d g v dss 60v r ds(on) typ. 5.4m max. 6.8m i d (silicon limited) 99a i d (package limited) 50a d-pak auIRLR3636 absolute maximum ratings stresses beyond those listed under ?absolute maximum ratings? may cause permanent damage to the device. these are stress rati ngs only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. exposure to absolute- maximum-rated conditions for extended periods may affect device reliability. the thermal resistance and power dissipation ratin gs are measured under board mounted and still air conditions. ambient temperature (t a ) is 25c, unless otherwise specified. features  advanced process technology  ultra low on-resistance  175c operating temperature  fast switching  repetitive avalanche allowed up to tjmax  lead-free, rohs compliant  automotive qualified * description specifically designed for automotive applications, thi mosfet utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. additional features of this design are a 175c junction operating temperature, fast switching speed and improved repetitive avalanche rating . these features combine to make this design an extremely efficient and reliable device for use in automotive applications and a wide variety of other applications. symbol parameter units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 100c continuous drain current, v gs @ 10v (silicon limited) a i d @ t c = 25c continuous drain current, v gs @ 10v (package limited) i dm pulsed drain current p d @t c = 25c maximum power dissipation w linear derating factor w/c v gs gate-to-source voltage v e as single pulse avalanche energy (thermally limited)  mj i ar avalanche current a e ar repetitive avalanche energy mj dv/dt peak diode recovery  v/ns t j operating junction and t stg storage temperature range soldering temperature, for 10 seconds (1.6mm from case) thermal resistance symbol parameter typ. max. units r jc junction-to-case  ??? 1.05 r ja junction-to-ambient (pcb mount)  ??? 50 c/w r ja junction-to-ambient ??? 110 170 see fig.14, 15, 22a, 22b c 143 22 16 0.95 -55 to + 175 300 max. 99  70  396 50 www.kersemi.com 2014-8-24 1
 s d g  pulse width 400 s; duty cycle 2%.  c oss eff. (tr) is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  c oss eff. (er) is a fixed capacitance that gives the same energy as c oss while v ds is rising from 0 to 80% v dss .  when mounted on 1" square pcb (fr-4 or g-10 material). for recommended footprint and soldering techniquea refer to applocation note # an- 994 echniques refer to application note #an-994.    

      
   calcuted continuous current based on maximum allowable junction temperature bond wire current limit is 50a. note that current limitation arising from heating of the device leds may occur with some lead mounting arrangements.  repetitive rating; pulse width limited by max. junction temperature. limited by t jmax , starting t j = 25c, l = 0.136 mh r g = 25 , i as = 50a, v gs =10v. part not recommended for use above this value .
i sd 50a, di/dt 1109 a/ s, v dd v (br)dss , t j 175c. static electrical characteristics @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 60 ??? ??? v v (br)dss / t j breakdown voltage temp. coefficient ??? 0.07 ??? v/c ??? 5.4 6.8 ??? 6.6 8.3 v gs(th) gate threshold voltage 1.0 ??? 2.5 v gfs forward transconductance 31 ??? ??? s r g(int) internal gate resistance ??? 0.6 ??? i dss drain-to-source leakage current ??? ??? 20 ??? ??? 250 i gss gate-to-source forward leakage ??? ??? 100 gate-to-source reverse leakage ??? ??? -100 dynamic electrical characteristics @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units q g total gate charge ??? 33 49 q gs gate-to-source charge ??? 11 ??? q gd gate-to-drain ("miller") charge ??? 15 ??? q sync total gate charge sync. (q g - q gd ) ??? 18 ??? t d(on) turn-on delay time ??? 45 ??? t r rise time ??? 216 ??? t d(off) turn-off delay time ??? 43 ??? t f fall time ??? 69 ??? c iss input capacitance ??? 3779 ??? c oss output capacitance ??? 332 ??? c rss reverse transfer capacitance ??? 163 ??? c oss eff. (er) effective output capacitance (energy related)  ??? 437 ??? c oss eff. (tr) effective output capacitance (time related)  ??? 636 ??? diode characteristics symbol parameter min. typ. max. units i s continuous source current (body diode) i sm pulsed source current (body diode)  v sd diode forward voltage ??? ??? 1.3 v t rr reverse recovery time ??? 27 ??? t j = 25c v r = 51v, ??? 32 ??? t j = 125c i f = 50a q rr reverse recovery charge ??? 31 ??? t j = 25c di/dt = 100a/ s  ??? 43 ??? t j = 125c i rrm reverse recovery current ??? 2.1 ??? a t j = 25c t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) v ds = 25v, i d = 50a v gs = -16v showing the v ds = 30v conditions v gs = 4.5v  v gs = 0v v ds = 50v ? = 1.0mhz v gs = 0v, v ds = 0v to 48v ,see fig.11 conditions v gs = 0v, i d = 250 a reference to 25c, i d = 5ma  v gs = 10v, i d = 50a  v ds = v gs , i d = 100 a v ds = 60v, v gs = 0v v ds = 60v, v gs = 0v, t j = 125c ns v gs = 0v, v ds = 0v to 48v  mosfet symbol t j = 25c, i s = 50a, v gs = 0v  integral reverse p-n junction diode. v gs = 16v nc a na nc ns r ds(on) static drain-to-source on-resistance pf a 99  396 ??? ??? ??? ??? v gs = 4.5v, i d = 50a  m i d = 50a r g = 7.5 v gs = 4.5v  v dd = 39v i d = 50a, v ds =0v, v gs = 4.5v conditions i d = 50a www.kersemi.com 2014-8-24 2
  
    
        
    
 
    ! "#$%&%'    ' 
     ( )  )*  ) qualification information ? d-pak msl1 qualification level automotive (per aec-q101) ?? comments: this part number(s) passed automotive qualification. ir?s industrial and consumer qualification level is granted by extension of the higher automotive level. charged device model class c5 (+/- 2000v) ??? aec-q101-005 moisture sensitivity level rohs compliant yes esd machine model class m4 (+/- 600v) ??? aec-q101-002 human body model class h1c (+/- 2000v) ??? aec-q101-001  www.kersemi.com 2014-8-24 3
fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 4.5v 4.0v 3.5v 3.3v 3.0v bottom 2.7v 60 s pulse width tj = 25c 2.7v 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 4.5v 4.0v 3.5v 3.3v 3.0v bottom 2.7v 60 s pulse width tj = 175c 2.7v 1 2 3 4 5 6 7 v gs , gate-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 175c v ds = 25v 60 s pulse width -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 2.5 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 50a v gs = 10v 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 5 10 15 20 25 30 35 40 q g , total gate charge (nc) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 48v vds= 30v v ds = 12v i d = 50a  www.kersemi.com 2014-8-24 4
fig 8. maximum safe operating area fig 10. drain-to-source breakdown voltage fig 7. typical source-drain diode forward voltage fig 11. typical c oss stored energy fig 9. maximum drain current vs. case temperature fig 12. maximum avalanche energy vs. draincurrent 0.1 0.4 0.7 1 1.3 1.6 1.9 v sd , source-to-drain voltage (v) 0.1 1 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 25 50 75 100 125 150 175 t c , case temperature (c) 0 10 20 30 40 50 60 70 80 90 100 110 i d , d r a i n c u r r e n t ( a ) limited by package -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , temperature ( c ) 50 55 60 65 70 75 80 v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e ( v ) id = 5ma 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) operation in this area limited by r ds (on) tc = 25c tj = 175c single pulse 100 sec 1msec 10msec dc limited by package 0 5 10 15 20 25 30 35 40 45 50 55 60 65 v ds, drain-to-source voltage (v) 0.0 0.2 0.4 0.6 0.8 e n e r g y ( j ) 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 100 200 300 400 500 600 700 800 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 5.69a 10.64a bottom 50a  www.kersemi.com 2014-8-24 5
fig 13. maximum effective transient thermal impedance, junction-to-case fig 14. typical avalanche current vs.pulsewidth fig 15. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 14, 15: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 16a, 16b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 14, 15). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figures 13) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav, assuming ? j = 25c and tstart = 150c. 0.01 allowed avalanche current vs avalanche pulsewidth, tav, assuming tj = 150c and tstart =25c (single pulse) 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 50 100 150 200 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1.0% duty cycle i d = 50a 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) c / w 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 ci i / ri ci= i / ri c 4 4 r 4 r 4 ri (c/w) i (sec) 0.02028 0.000011 0.29406 0.000158 0.49179 0.001393 0.24336 0.00725  www.kersemi.com 2014-8-24 6
 $+ 

* # *   fig 16. threshold voltage vs. temperature  $+ 
, #)*   
$+ 

* # *    $+ 
, #)*   -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 v g s ( t h ) , g a t e t h r e s h o l d v o l t a g e ( v ) i d = 100 a id = 250 a i d = 1.0ma id = 1.0a 0 200 400 600 800 1000 di f /dt (a/ s) 0 2 4 6 8 10 12 14 i r r m ( a ) i f = 20a v r = 51v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 0 2 4 6 8 10 12 14 16 i r r m ( a ) i f = 30a v r = 51v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 0 50 100 150 200 250 300 350 q r r ( a ) i f = 20a v r = 51v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 0 50 100 150 200 250 300 350 q r r ( a ) i f = 30a v r = 51v t j = 25c t j = 125c  www.kersemi.com 2014-8-24 7
fig 23a. switching time test circuit fig 23b. switching time waveforms fig 22b. unclamped inductive waveforms fig 22a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 24a. gate charge test circuit fig 24b. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr fig 21. -./ 
* * + #
  for n-channel hexfet   power mosfets  
     ? 
     ?     ?

         p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period 0     !
"

"!
 0 + - + + + - - -
     ?      !  ?   " #$## ?        %  && ? #$##'$

   d.u.t. v ds i d i g 3ma v gs .3 f 50k .2 f 12v current regulator same type as d.u.t. current sampling resistors + - v ds 90% 10% v gs t d(on) t r t d(off) t f   ( ) 1 *  %   0.1 %       # $ + -      www.kersemi.com 2014-8-24 8

  
 
  

 

 
   ! !  """" / #  121 3323 .3. "2"  *456 - 7 5 ) 5 #   www.kersemi.com 2014-8-24 9

  #$   

 

 
  tr 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) 12.1 ( .476 ) 11.9 ( .469 ) feed direction feed direction 16.3 ( .641 ) 15.7 ( .619 ) trr trl notes : 1. controlling dimension : millimeter. 2. all dimensions are shown in millimeters ( inches ). 3. outline conforms to eia-481 & eia-541. notes : 1. outline conforms to eia-481. 16 mm 13 inch  www.kersemi.com 2014-8-24 10
ordering information base part number package type standard pack complete part number form quantity auIRLR3636 dpak tube 75 auIRLR3636 tape and reel 2000 auIRLR3636tr tape and reel left 3000 auIRLR3636trl tape and reel right 3000 auIRLR3636trr  www.kersemi.com 2014-8-24 11


▲Up To Search▲   

 
Price & Availability of IRLR3636

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X