s m d z e n e r d i o d e v o l t a g e 2 . 4 t o 3 9 v o l t s p o w e r 2 0 0 m w a t t s c z r f 2 v 4 b t h r u c z r f 3 9 v b p a g e 1 f e a t u r e s 2 0 0 m w p o w e r d i s s i p a t i o n . h i g h vo l t a g e s f r o m 2 . 4 ~ 3 9 v . d e s i g n e d f o r m o u n t i n g o n s m a l l s u r f a c e . e x t r e m e l y t h i n / l e a d l e s s p a c k a g e . c o n s t a n t v o l t a g e c o n t r o l . p b f r e e p r o d u c t . m e c h a n i c a l d a t a c a s e : 1 0 0 5 ( 2 5 1 2 ) s t a n d a r d p a c k a g e m o l d e d p l a s t i c . t e r m i n a l s : g o l d p l a t e d , s o l d e r a b l e p e r m i l - s t d - 7 5 0 , m e t h o d 2 0 2 6 . p o l a r i t y : i n d i c a t e d b y c a t h o d e b a n d . w e i g h t : 0 . 0 0 6 g r a m ( a p p r o x . ) . o p e r a t i n g j u n c t i o n a n d s t o r a g e t e m p e r a t u r e r a n g e p a r a m e t e r s y m b o l va l u e 0 . 9 2 0 0 - 5 5 t o + 1 2 5 u n i t v m w f o r w a r d c u r r e n t , s u r g e p e a k 8 . 3 m s s i n g l e h a l f s i n e - w a v e s u p e r i m p o s e d o n r a t e l o a d ( j e d e c m e t h o d ) 2 . 0 a m a x i m u m r a t i n g a n d e l e c t r i c a l c h a r a c t e r i s t i c s i f s m p d v f t j o c m a x i m u m f o r w a r d v o l t a g e d r o p a t i f = 1 0 m a o m a x i m u m p o w e r d i s s i p a t i o n a t 2 5 c 0 . 1 0 2 ( 2 . 6 0 ) 0 . 0 9 5 ( 2 . 4 0 ) 0 . 0 2 0 ( 0 . 5 0 ) t y p . 0 . 0 5 1 ( 1 . 3 0 ) 0 . 0 4 3 ( 1 . 1 0 ) 0 . 0 3 5 ( 0 . 9 0 ) 0 . 0 2 7 ( 0 . 7 0 ) d i m e n s i o n s i n i n c h e s a n d ( m i l l i m e t e r ) 1 0 0 5 ( 2 5 1 2 ) 0 . 0 1 2 ( 0 . 3 0 ) t y p . 0 . 0 4 0 ( 1 . 0 0 ) t y p . s m d d i o d e s s p e c i a l i s t q w - a 2 0 0 3 r e v : b p e a k e s d v o l t a g e c a p a b i l i t y ( i e c 6 1 0 0 0 - 4 - 2 ) 8 v p v k v
s m d z e n e r d i o d e p a g e 2 p a r t nu mbe r m ar ki ng co d e mi n ma x i z ( ma) ma x i z ( ma) ma x i z ( ma) ma x v r ( v ) v z ( v ) z z t ( oh m) z z k( oh m) i r( u a) z e n e r v o l t a g e op e r a t i n g r e s i s t a n c e ri s i n g o p e r a t i n g re s i s t a n c e re v e r s e c u r r e n t o e l e c t r i c a l c h a r a c t e r i s t i c s ( t a = 2 5 c ) r e v : b s m d d i o d e s s p e c i a l i s t q w - a 2 0 0 3 c zr f2 v 4b c zr f2 v 7b c zr f3 v 0b c zr f3 v 3b c zr f3 v 6b c zr f3 v 9b c zr f4 v 3b c zr f4 v 7b c zr f5 v 1b c zr f5 v 6b c zr f6 v 2b c zr f6 v 8b c zr f7 v 5b c zr f8 v 2b c zr f9 v 1b c zr f1 0v b c zr f1 1v b c zr f1 2v b c zr f1 3v b c zr f1 5v b c zr f1 6v b c zr f1 8v b c zr f2 0v b c zr f2 2v b c zr f2 4v b c zr f2 7v b c zr f3 0v b c zr f3 3v b c zr f3 6v b c zr f3 9v b u 2 u 3 u 4 u 5 u 6 u 7 u 8 u 9 u a u b u c u e u f u g u h u j u k u m u n u p u q u r u s u t u u u v u w u x u y u z 2. 34 2. 63 2. 93 3. 22 3. 51 3. 80 4. 19 4. 58 4. 97 5. 46 6. 05 6. 63 7. 31 8. 00 8. 87 9. 75 10. 73 1 1. 70 12. 68 14. 63 15. 60 17. 55 19. 50 21. 45 23. 40 26. 33 29. 25 32. 18 35. 10 38. 03 2. 46 2. 77 3. 08 3. 38 3. 69 4. 00 4. 41 4. 82 5. 23 5. 74 6. 36 6. 97 7. 69 8. 41 9. 33 10. 25 1 1. 27 12. 30 13. 32 15. 37 16. 40 18. 45 20. 50 22. 55 24. 60 27. 67 30. 75 33. 82 36. 90 39. 97 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 100 100 95 95 90 90 88 70 50 25 10 8 7 7 10 15 18 22 25 32 36 42 48 55 62 70 78 88 95 130 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1800 1900 2000 2200 2300 2400 2500 2200 2050 1800 1300 750 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 700 700 800 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 100 75 50 25 15 10 5 3 2 2 1 1 0. 5 0. 5 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 1 1 1 1 1 1 1 1. 5 2 3 4 5. 2 6 6. 5 7 8. 4 9. 1 9. 9 1 1 12 14 15 17 18 21 23 25 27 30 8
ra ting and characteristic cur ves (czrf2v4b thru czrf39vb) 1 0 0 m 1 0 m 1 m 1 0 0 1 0 1 1 0 0 n 1 0 n 0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 f i g . 1 z e n e r v o l t a g e c h a r a c t e r i s t i c s 3 . 6 3 . 9 4 . 3 4 . 7 5 . 1 5 . 6 6 . 2 6 . 8 7 . 5 8 . 2 9 . 1 1 0 1 1 1 2 1 3 1 5 1 6 3 0 2 7 2 4 2 2 2 0 1 8 3 3 3 6 3 0 0 2 0 0 1 0 0 0 0 2 5 5 0 7 5 1 0 0 1 2 5 1 5 0 f i g . 2 de r a t i n g c u r v e z e n e r v o l t a g e : v z ( v ) 0 . 1 0 i z = 5 m a 2 1 0 2 0 3 0 0 . 0 8 0 . 0 6 0 . 0 2 0 . 0 0 - 0 . 0 2 - 0 . 0 4 - 0 . 0 6 - 0 . 0 6 - 0 . 0 8 0 . 0 4 p o w e r d i s s i p a t i o n : p d ( m w ) f i g . 3 z e n e r v o l t a g e - t e mp . co e f f i c i e n t c h a r a c t e r i s t i c s z e n e r c u r r e n t : i z ( a ) z e n e r v o l t a g e : v z ( v ) o a m b i e n t t e m p e r a t u r e : t a ( c ) i z = 5 0 0 a o t e m p c o e f f i c i e n t c h a r a c t e r i s t i c s ( % / c ) p a g e 3 q w - a 2 0 0 3 r e v : b s m d d i o d e s s p e c i a l i s t s m d z e n e r d i o d e
p a g e 4 q w - a 2 0 0 3 r e v : b s m d d i o d e s s p e c i a l i s t s m d z e n e r d i o d e in d e x h o l e o 1 2 0 t r a i l e r d e v i c e l e a d e r 1 0 p i t c h e s ( m i n ) 1 0 p i t c h e s ( m i n ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . e n d s t a r t d e f b w a p p 0 p 1 d 1 d 2 d w 1 t c d i r e c t i o n o f f e e d b c d d d 2 d 1 e f p p 0 p 1 t f / 1 0 0 5 s y m b o l a w w 1 r e e l t a p i n g s p e c i f i c a t i o n ( m m ) ( i n c h ) 0 . 0 6 1 0 . 0 0 4 0 . 1 0 4 0 . 0 0 4 0 . 0 4 1 0 . 0 0 4 0 . 0 6 1 0 . 0 0 2 7 . 0 0 8 0 . 0 4 2 . 3 6 2 m i n . 0 . 5 1 2 0 . 0 0 8 f / 1 0 0 5 s y m b o l ( m m ) ( i n c h ) 0 . 0 6 9 0 . 0 0 4 0 . 1 3 8 0 . 0 0 2 0 . 1 5 7 0 . 0 0 4 0 . 1 5 7 0 . 0 0 4 0 . 0 7 9 0 . 0 0 4 0 . 0 0 9 0 . 0 0 2 0 . 3 1 5 0 . 0 0 8 0 . 5 3 1 m a x . p o l a r i t y 1 . 5 5 0 . 1 0 2 . 6 5 0 . 1 0 4 . 0 0 0 . 1 0 1 . 5 5 0 . 0 5 3 . 5 0 0 . 0 5 1 . 7 5 0 . 1 0 6 0 . 0 m i n . 1 3 . 0 0 . 2 0 1 . 0 5 0 . 1 0 4 . 0 0 0 . 1 0 2 . 0 0 0 . 0 5 0 . 2 3 0 . 0 5 8 . 0 0 0 . 2 0 1 3 . 5 m a x . 1 7 8 1
p a g e 5 q w - a 2 0 0 3 r e v : b s m d d i o d e s s p e c i a l i s t s m d z e n e r d i o d e s u g g e s t e d p a d l a y o u t s i z e ( i n c h ) 0 . 0 8 3 ( m m ) 2 . 1 0 1 . 2 0 1 . 2 0 0 . 0 4 7 0 . 0 4 7 f / 1 0 0 5 3 . 3 0 0 . 1 3 0 e 0 . 9 0 0 . 0 3 5 s t a n d a r d p a c k a g e c a s e t y p e q t y p e r r e e l ( p c s ) 4 0 0 0 f / 1 0 0 5 r e e l s i z e ( i n c h ) 7 a b c d a c b e d
|