i o = 1 0 0 m a v r = 3 0 v o l t s c d b q r 0 1 3 0 l s m d s c h o t t k y b a r r i e r d i o d e ( r o h s d e v i c e ) p a g e 1 q w - a 1 1 2 8 r e v : b s m d d i o d e s s p e c i a l i s t c o m c h i p t e c h n o l o g y c o . , l t d . a m a v v 1 1 0 0 3 0 3 5 i o v r v r r m i f s m 8 . 3 m s s i n g l e h a l f s i n e - w a v e s u p e r i m p o s e d o n r a t e l o a d ( j e d e c m e t h o d ) o c o c + 1 2 5 + 1 2 5 - 4 0 t s t g t j s t o r a g e t e m p e r a t u r e j u n c t i o n t e m p e r a t u r e a v e r a g e f o r w a r d c u r r e n t r e v e r s e v o l t a g e r e p e t i t i v e p e a k r e v e r s e v o l t a g e f o r w a r d c u r r e n t , s u r g e p e a k p a r a m e t e r c o n d i t i o n s s y m b o l m i n t y p m a x u n i t u a v 1 0 0 . 3 5 i r v f r e v e r s e c u r r e n t f o r w a r d v o l t a g e p a r a m e t e r c o n d i t i o n s s y m b o l m i n t y p m a x u n i t v r = 1 0 v i f = 1 0 m a o m a x i m u m r a t i n g ( a t t a = 2 5 c u n l e s s o t h e r w i s e n o t e d ) o e l e c t r i c a l c h a r a c t e r i s t i c s ( a t t a = 2 5 c u n l e s s o t h e r w i s e n o t e d ) f e a t u r e s l o w f o r w a r d v o l t a g e . d e s i g n e d f o r m o u n t i n g o n s m a l l s u r f a c e . e x t r e m e l y t h i n / l e a d l e s s p a c k a g e . m a j o r i t y c a r r i e r c o n d u c t i o n . m e c h a n i c a l d a t a c a s e : 0 4 0 2 ( 1 0 0 5 ) s t a n d a r d p a c k a g e , m o l d e d p l a s t i c . t e r m i n a l s : g o l d p l a t e d , s o l d e r a b l e p e r m i l - s t d - 7 5 0 , m e t h o d 2 0 2 6 . m a r k i n g c o d e : c a t h o d e b a n d & b p m o u n t i n g p o s i t i o n : a n y w e i g h t : 0 . 0 0 1 g r a m ( a p p r o x . ) . 0 . 0 4 1 ( 1 . 0 5 ) 0 . 0 3 7 ( 0 . 9 5 ) 0 . 0 2 6 ( 0 . 6 5 ) 0 . 0 2 2 ( 0 . 5 5 ) 0 4 0 2 ( 1 0 0 5 ) d i m e n s i o n s i n i n c h e s a n d ( m i l l i m e t e r ) 0 . 0 2 0 ( 0 . 5 0 ) t y p . 0 . 0 2 2 ( 0 . 5 5 ) 0 . 0 1 8 ( 0 . 4 5 ) 0 . 0 1 2 ( 0 . 3 0 ) t y p .
ra ting and characteristic cur ves (CDBQR0130L) s m d s c h o t t k y b a r r i e r d i o d e p a g e 2 q w - a 1 1 2 8 s m d d i o d e s s p e c i a l i s t r e v : b c o m c h i p t e c h n o l o g y c o . , l t d . f o r w a r d v o l t a g e ( m v ) 2 6 0 2 3 0 2 7 0 2 5 0 2 8 0 2 4 0 a v g :2 4 1 m v o t a = 2 5 c i f = 1 0 m a n = 3 0 p c s f i g . 5 - v f d i s p e r s i o n m a p r e v e r s e c u r r e n t ( u a ) 3 0 0 4 0 2 0 5 0 1 0 a v g :4 .2 u a 5 1 5 2 5 3 5 4 5 f i g . 6 - i r d i s p e r s i o n m a p c a p a c i t a n c e b e t w e e n t e r m i n a l s ( p f ) 2 6 2 0 2 8 2 4 3 0 2 2 a v g :2 2 .8 p f 2 1 2 3 2 5 2 7 2 9 f i g . 7 - c t d i s p e r s i o n m a p o t a = 2 5 c f = 1 m h z v r = 0 v n = 1 0 p c s o t a = 2 5 c v r = 1 0 v n = 3 0 p c s 0 1 5 1 0 2 0 1 1 0 1 0 0 5 2 5 3 0 c a p a c i t a n c e b e t w e e n t e r m i n a l s ( p f ) r e v e r s e v o l t a g e ( v ) f i g . 3 - c a p a c i t a n c e b e t w e e n t e r m i n a l s c h a r a c t e r i s t i c s f = 1 m h z t a = 2 5 c 1 u 1 0 n 1 0 u 1 0 0 n 0 1 0 2 0 2 5 3 0 1 m 1 0 0 u 1 5 5 r e v e r s e v o l t a g e ( v ) f i g . 2 - r e v e r s e c h a r a c t e r i s t i c s r e v e r s e c u r r e n t ( a ) o 2 5 c o 7 5 c o - 2 5 c 0 .2 0 .4 0 1 1 0 0 0 .5 0 0 .8 1 0 0 0 0 .6 0 .3 0 .1 0 .7 1 0 f o r w a r d c u r r e n t ( m a ) f o r w a r d v o l t a g e ( v ) f i g . 1 - f o r w a r d c h a r a c t e r i s t i c s 0 2 0 4 0 6 0 8 0 1 0 0 0 2 5 5 0 7 5 1 0 0 1 2 5 o a m b i e n t t e m p e r a t u r e ( c ) a v e r a g e f o r w a r d c u r r e n t ( % ) f i g . 4 - c u r r e n t d e r a t i n g c u r v e o - 2 5 c o 2 5 c o 7 5 c o 1 2 5 c
s m d s c h o t t k y b a r r i e r d i o d e s m d d i o d e s s p e c i a l i s t p a g e 3 q w - a 1 1 2 8 r e v : b c o m c h i p t e c h n o l o g y c o . , l t d . in d e x h o l e o 1 2 0 t r a i l e r d e v i c e l e a d e r 1 0 p i t c h e s ( m i n ) 1 0 p i t c h e s ( m i n ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . e n d s t a r t d e f b w a p p 0 p 1 d 1 d 2 d w 1 t c d i r e c t i o n o f f e e d r e e l t a p i n g s p e c i f i c a t i o n p o l a r i t y b c d d d 2 d 1 e f p p 0 p 1 t q r / 0 4 0 2 s y m b o l a w w 1 ( m m ) ( i n c h ) 0 . 0 2 6 0 . 0 0 4 0 . 0 4 5 0 . 0 0 4 0 . 0 2 4 0 . 0 0 4 0 . 0 6 1 0 . 0 0 4 7 . 0 0 8 0 . 0 4 2 . 3 6 2 m i n . 0 . 5 1 2 0 . 0 0 8 q r / 0 4 0 2 s y m b o l ( m m ) ( i n c h ) 0 . 0 6 9 0 . 0 0 4 0 . 1 3 8 0 . 0 0 2 0 . 1 5 7 0 . 0 0 4 0 . 1 5 7 0 . 0 0 4 0 . 0 7 9 0 . 0 0 4 0 . 0 0 9 0 . 0 0 2 0 . 3 1 5 0 . 0 0 8 0 . 5 3 1 m a x . 0 . 7 5 0 . 1 0 1 . 1 5 0 . 1 0 4 . 0 0 0 . 1 0 1 . 5 5 0 . 1 0 3 . 5 0 0 . 0 5 1 . 7 5 0 . 1 0 6 0 . 0 m i n . 1 3 . 0 0 . 2 0 0 . 6 0 0 . 1 0 4 . 0 0 0 . 1 0 2 . 0 0 0 . 1 0 0 . 2 2 0 . 0 5 8 . 0 0 0 . 2 0 1 3 . 5 m a x . 1 7 8 1
s m d s c h o t t k y b a r r i e r d i o d e s m d d i o d e s s p e c i a l i s t p a g e 4 q w - a 1 1 2 8 r e v : b c o m c h i p t e c h n o l o g y c o . , l t d . b p p a r t n u m b e r c d b q r 0 1 3 0 l m a r k i n g c o d e b p m a r k i n g c o d e s u g g e s t e d p a d l a y o u t s i z e ( i n c h ) 0 . 0 3 0 ( m m ) 0 . 7 5 0 0 . 5 0 0 0 . 7 0 0 0 . 0 2 0 0 . 0 2 8 q r / 0 4 0 2 1 . 2 5 0 0 . 0 4 9 e 0 . 2 5 0 0 . 0 1 0 s t a n d a r d p a c k a g e c a s e t y p e q t y p e r r e e l ( p c s ) 5 0 0 0 q r / 0 4 0 2 r e e l s i z e ( i n c h ) 7 a b c d a c b e d
|