Part Number Hot Search : 
X5068F DE2S062 05410 HEF4052B RK73HW3A LPC177X 2415A N60UFD
Product Description
Full Text Search
 

To Download 74V1T14S Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 (R)
74V1T14
SINGLE SCHMITT INVERTER
s s
s s s
s
s
s
HIGH SPEED: tPD = 4.7 ns (TYP.) at VCC = 5V LOW POWER DISSIPATION: ICC = 1 A (MAX.) at TA = 25 oC TYPICAL HYSTERESIS: Vh =0.7V AT VCC =4.5V POWER DOWN PROTECTION ON INPUT SYMMETRICAL OUTPUT IMPEDANCE: |IOH| = IOL = 8 mA (MIN) BALANCED PROPAGATION DELAYS: tPLH tPHL OPERATING VOLTAGE RANGE: VCC (OPR) = 4.5V to 5.5V IMPROVED LATCH-UP IMMUNITY
S (SOT23-5L)
C (SC-70)
ORDER CODE: 74V1T14S 74V1T14C interface 5V to 3V. Pin configuration and function are the same as those of the V1G04 but the V1G14 has hysteresis. The schmitt trigger function allows it to be used on line receivers with slow rise/fall input signals.
DESCRIPTION The 74V1T14 is an advanced high-speed CMOS SINGLE SCHMITT INVERTER fabricated with sub-micron silicon gate and double-layer metal wiring C2MOS technology. The internal circuit is composed of 3 stages including buffer output, which provide high noise immunity and stable output. Power down protection is provided on input and 0 to 7V can be accepted on input with no regard to the supply voltage. This device can be used to
PIN CONNECTION AND IEC LOGIC SYMBOLS
October 1999
1/7
74V1T14
INPUT EQUIVALENT CIRCUIT PIN DESCRIPTION
PIN No 1 2 4 3 5 SYMBOL N.C. 1A 1Y GND VCC NAME AND FUNCT ION Not Connected Data Input Data Output Ground (0V) Positive Supply Voltage
TRUTH TABLE
A L H Y H L
ABSOLUTE MAXIMUM RATINGS
Symbol VCC VI VO IIK IOK IO Tstg TL Supply Voltage DC Input Voltage DC Output Voltage DC Input Diode Current DC Output Diode Current DC Output Current Storage Temperature Lead Temperature (10 sec) Parameter Value -0.5 to +7.0 -0.5 to +7.0 -0.5 to VCC + 0.5 - 20 20 25 50 -65 to +150 260 Unit V V V mA mA mA mA
o o
ICC or IGND DC VCC or Ground Current
C C
Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.
RECOMMENDED OPERATING CONDITIONS
Symbol VCC VI VO Top Supply Voltage Input Voltage Output Voltage Operating Temperature Parameter Valu e 4.5 to 5.5 0 to 5.5 0 to VCC -40 to +85 Unit V V V
o
C
2/7
74V1T14
DC SPECIFICATIONS
Symb ol Parameter T est Cond ition s V CC (V) Vt+ VtVh VOH VOL II ICC ICC High Level Input Voltage Low Level Input Voltage Hysteresis Voltage High Level Output Voltage Low Level Output Voltage Input Leakage Current Quiescent Supply Current Additional Worst Case Supply Current 4.5 5.5 4.5 5.5 4.5 5.5 4.5 4.5 4.5 4.5 0 to 5.5 5.5 5.5 I O =-50 A IO=-8 mA I O=50 A IO=8 mA VI = 5.5V or GND VI = VCC or GND One Input at 3.4V, other input at VCC or GND 0.4 0.4 4.4 3.94 0.0 0.1 0.36 0.1 1 1.35 4.5 Min. 2.0 2.0 0.6 0.6 1.4 1.5 0.4 0.4 4.4 3.8 0.1 0.44 1.0 10 1.5 Typ . Value T A = 25 o C Max. -40 to 85 o C Min . 2.0 2.0 0.6 0.6 1.4 1.5 Max. V V V V V A A mA Un it
AC ELECTRICAL CHARACTERISTICS (Input t r = tf =3 ns)
Symb ol Parameter Test Co ndition V CC (*) (V) tPLH tPHL Propagation Delay Time 5.0 5.0 CL (pF ) 15 50
o
Value T A = 25 C Min. Typ . Max. 5.0 6.5 7.5 8.5 -40 to 85 C Min . Max. 1.0 1.0 9.0 10.0
o
Un it
ns
(*) Voltage range is 5V 0.5V
CAPACITIVE CHARACTERISTICS
Symb ol Parameter T est Cond ition s Min. C IN CPD Input Capacitance Power Dissipation Capacitance (note 1) Typ . 4 12 Value T A = 25 o C Max. 10 -40 to 85 o C Min . Max. 10 pF pF Un it
1) CPD isdefined as the value of the IC'sinternal equivalent capacitance which is calculated fromthe operating current consumption without load. (Referto Test Circuit).Average operating current can be obtained by the following equation. ICC(opr) = CPD * VCC * fIN + ICC
3/7
74V1T14
TEST CIRCUIT
CL = 15/50 pF or equivalent (includes jig and probe capacitance) RT = ZOUT of pulse generator (typically 50)
WAVEFORM: PROPAGATION DELAYS (f=1MHz; 50% duty cycle)
4/7
74V1T14
SOT23-5L MECHANICAL DATA
mm MIN. A A1 A2 b C D E E1 L e e1 0.90 0.00 0.90 0.35 0.09 2.80 2.60 1.50 0.35 0.95 1.9 TYP. MAX. 1.45 0.15 1.30 0.50 0.20 3.00 3.00 1.75 0.55 MIN. 35.4 0.0 35.4 13.7 3.5 110.2 102.3 59.0 13.7 37.4 74.8 mils TYP. MAX. 57.1 5.9 51.2 19.7 7.8 118.1 118.1 68.8 21.6
DIM.
5/7
74V1T14
SC-70 MECHANICAL DATA
mm MIN. A A1 A2 b C D E E1 L e e1 0.80 0.00 0.80 0.15 0.10 1.80 1.80 1.15 0.10 0.65 1.3 TYP. MAX. 1.10 0.10 1.00 0.30 0.18 2.20 2.40 1.35 0.30 MIN. 31.5 0.0 31.5 5.9 3.9 70.9 70.9 45.3 3.9 25.6 51.2 mils TYP. MAX. 43.3 3.9 39.4 11.8 7.1 86.6 94.5 53.1 11.8
DIM.
6/7
74V1T14
Information furnished is believed to be accurate and reliable. However, STMicroelectronic s assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems withoutexpress written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics (c) 1999 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A. http://www.st.com .
7/7


▲Up To Search▲   

 
Price & Availability of 74V1T14S

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X