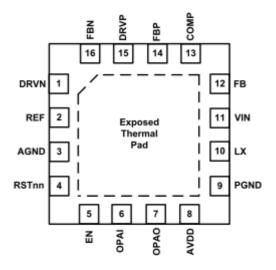


General Description

TheEC9223 is an integrated power supply solution optimized for small to medium size thin- film transistor (TFT) liquid crystal displays (LCD's). The boost converter operates at a fixed frequency of 1.2MHz. The integrated N-channel FET has a current limit of 1.8A. The positive and negative charge pumps provide regulated TFT LCD gate-on and gate-off supplies. Both outputs can be adjusted by external resistive voltage dividers.

The integrated operational amplifier is typically used for LCD VCOM driving; the output can sink or source up to 150mA short-circuit current. A built-in voltage detector generates a reset signal when the input voltage drops below 2.6V. The reset signal is active low and has a 123ms blanking time during power-on. The EC9223 is available in a thin 16-pin 3x3 mm WQFN green package.


Features

QFN-16 Pin Configuration

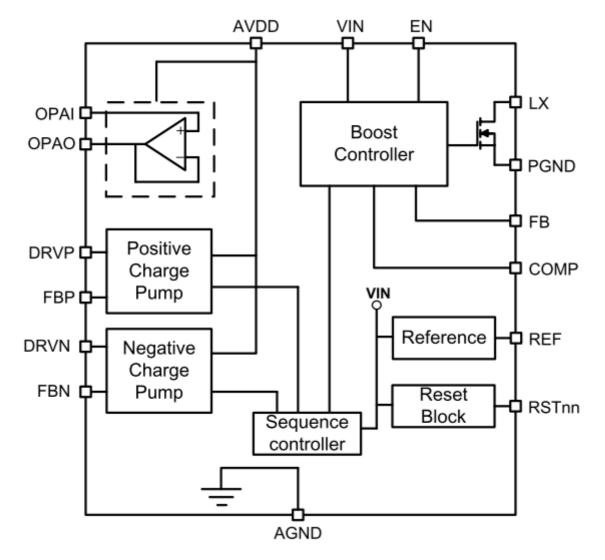
- ♦ 2.5V to 5.5V input supply
- Active-high Enable Control
- ◆ Current-mode boost regulator
 - 1.2MHz switching frequency
 - Integrated 20V/1.8A 700m Ω FET
 - Fast transient response to pulsed load
 - High efficiency up to 90%
 - Adjustable high-accuracy output voltage(±1%)
- ◆ VGH positive charge pump
- VGL negative charge pump
- ◆ Integrated unity-gain Vсом buffer
 - ±150mA output current limit
 - 12V/us slew rate
 - 12MHz Bandwidth
- Low-voltage detection circuit
- ♦ Soft-start and timed delay fault latch for all outputs
- Thermal shutdown
- Thin 3x3 mm 16-lead WQFN package

Applications

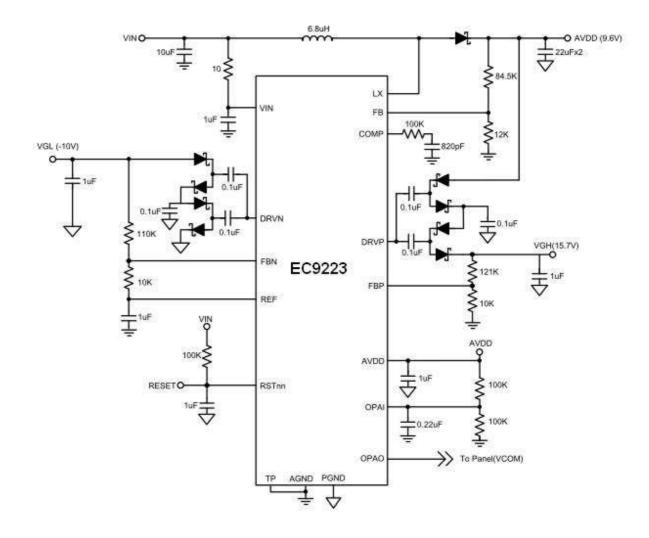
- ♦ TFT LCD for Notebooks
- Tablet Personal Computer Display
- Car Navigation Display
- Portable equipment

PIN DESCRIPTION

Number	Name	Pin Description			
1	DRVN	Negative charge pump driver output.			
2	REF	Reference output. All power outputs are disabled until REF exceeds its UVLO			
3	AGND	Analog ground.			
4	RSTnn	Voltage detector output. RSTnn is an active-low open-drain output.			
5	EN	Enable control input pin. This pin has a 4uA pull-down current source.			
6	OPAI	Unity-gain buffer input pin.			
7	OPAO	Unity-gain buffer output pin.			
8	AVDD	Charge pump and unity-gain buffer supply.			
9	PGND	Boost converter power ground (source of the internal NMOS switch).			
10	LX	Boost converter switching node (drain of the internal NMOS switch).			
11	VIN	Supply for PWM, reference and other circuits.			
12	FB	Boost converter feedback voltage input.			
13	COMP	Boost converter error amplifier compensation node.			
14	FBP	Positive charge pump feedback input.			
15	DRVP	Positive charge pump driver output.			
16	FBN	Negative charge pump feedback input.			
-	TP	Thermal Pad, connect to AGND.			


Ordering Information

Part Number	Package	Marking	Marking Information
EC9223NNQ1R	WQFN 16L	9223 LLLLL	1. LLLLL : Lot No



Function Block Diagram

Typical Application Diagram

Absolute Maximum Ratings

Input Supply Voltage, VIN	-0.3V to 6.5V
Voltages on EN, RSTnn	-0.3V to 6.5V
Voltages on AVDD, LX	-0.3V to 22V
Voltages on FB, FBP, FBN, COMP, REF	-0.3V to (VIN+0.3V)
Voltages on DRVP, DRVN, OPAI, OPAO	-0.3V to (AVDD+0.3V)
Storage temperature range	-65℃ to 150℃
Lead temperature (soldering, 10s maximum)	260°C
ESD, Human body mode	2kV
ESD, Machine mode	200V

Note1: All voltages are referenced to ground with PGND and AGND pins grounded.

Note2: "ABSOLUTE MAXIMUM RATINGS" indicate limits beyond which permanent damage to the device may occur. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. For guaranteed specifications and test conditions, see the "ELECTRICAL SPECIFICATIONS".

Recommended Operation Conditions

Junction temperature range	-40℃ to 125℃
Ambient temperature range	-40℃ to 85℃

Power Dissipation Ratings

Package	Thermal Resistance,	Power Rating	Power Rating	Power Rating
	OJA	(TA < 25 ℃)	(25 < TA < 85 ℃)	(TA = 85℃)
16-ld QFN	103℃ /W	1.25W	(125 - TA) / 103 W	0.39W

Electrical Specifications

(VIN=3.3V, AVDD = 8.5V, TA=25°C, unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Мах	Units
		System Supply				
Input Supply Voltage	Vin		2.5		5.5	V
VIN Under Voltage Lockout	Vuvlo	VIN rising	1.8	2.0	2.2	V
VIN Under Voltage Lockout	Vuvlo	Hysteresis		0.1		V
VIN Quiescent current	lq	VFB = 1.35V, LX no switching		0.3		mA
VIN Quiescent current	lq	VFB = 1.15V, LX switching		0.8		mA
EN Threshold	Vін		2			
EN Threshold	VIL				0.8	V
Thermal shutdown	TSHDN			150		°C
		Main Boost Regulator				
FB Regulation Voltage	Vfb		1.188	1.2	1.212	V
FB Fault Trip Level		Falling edge		0.95		V
FB Load Regulation		0< Iload < full		-1		%
FB Line Regulation		VIN = 2.5 to 5.5V		0.15	0.25	%/V
FB Input Bias Current		VFB = 1.25V	-40	0	40	nA
FB Transconductance	Gm	$\Delta I=\pm 5uA$ at COMP, FB = COMP		70		uA/V
FB Voltage Gain	Av	FB to COMP		1500		V/V
LX Current Limit		VFB =1.1V, duty cycle = 75%	1.4	1.8	2.2	А
LX On-Resistance	Rds_LX	ILX = 200mA		0.7		Ω
LX Leakage Current		VLX = 19V, TA = +25℃		0.1	10	uA
Current-Sense Transresistance				0.35		V/A
Maximum Duty Cycle	DUTY		85	90	94	%
Soft-Start Period	Tss1			7		ms
		Reference	1			1
REF OUTPUT Voltage	Vref	IREF=50uA	1.176	1.20	1.224	V
REF Load Regulation	IREF	0 <iload <100ua<="" td=""><td></td><td>1</td><td>5</td><td>mV</td></iload>		1	5	mV
REF Line Regulation		IREF = 100uA VIN=2.5V to 5.5V		2	5	mV
		Oscillator and Timing			1	
Frequency	Fosc		900	1200	1500	KHz
Duration to Trigger Fault Condition		FB or FBP or FBN below threshold		100		ms

Multi-Channel TFT LCD Supply

	Posi	tive Charge-Pump Regulator		1		
AVDD Supply Range	Vavdd		6		16	V
Operating Frequency	Fosc_cp			600		KHz
FBP Regulation Voltage	Vfbp		1.176	1.2	1.224	V
FBP Input Bias Current	IFBP_BIAS	Vfbp =1.5V, Ta = +25℃	-40	-	40	nA
DRVP P-Ch On-Resistance	Rdrvpp			20		Ω
DRVP N-Ch On-Resistance	Rdrvpn	VAVDD=10V,IDRVP=20mA		20		Ω
FBP Fault Trip Level		Falling edge		0.95		V
Soft-Start Period	TSS2			5		ms
	Nega	tive Charge-Pump Regulator	-			
AVDD Supply Range	Vavdd		6		16	V
Operating Frequency	Fosc_cp			600		KHz
FBN Regulation Voltage	Vfbn		210	240	270	mV
FBN Input Bias Current	IFBN_BIAS	Vfbn = 0V, Ta = +25℃	-40	-	40	nA
DRVN P-Ch On-Resistance	Rdrvnp			20		Ω
DRVN N-Ch On-Resistance	Rdrvnn	VAVDD=10V,IDRVN=20mA		20		Ω
FBN Fault Trip Level		Rising edge		0.45		V
Soft-Start Period	Tss3			5		ms
		Operational Amplifier				
AVDD Supply Range	Vavdd		6		16	V
AVDD Supply Current	Iavdd	VOPAI= VAVDD/2, no load		0.6	1.2	mA
Input Offset Voltage	Vos	Vopai =Vavdd/2, Ta = +25℃	-15	0	15	mV
Input Bias Current	IBIAS	Vopai =Vavdd/2, Ta = +25℃	-100		100	nA
Input Common-Mode Voltage Range			0		VAVDD	V
		ΟΡΑΟ Ιουτ = 100μΑ	Vavdd - 20	Vavdd - 5		mV
Output-Voltage-Swing High	VOH	OPAO lout = 5 mA	Vavdd - 200	Vavdd - 150		mV
		ΟΡΑΟ Ιουτ = -100μΑ		5	20	mV
Output-Voltage-Swing Low	VOL	OPAO IOUT = -5 mA		150	200	mV
Slew Rate	SR	VOPAO 20% to 80% with CL=10pF, RL=10k	8	12		V/us
-3dB Bandwidth	BW	CL=10pF, RL=10k		12		MHz
		VOPAI=VAVDD/2 , short output to GND (sourcing)	100	150		mA
Short-Circuit Current	ISCC	VOPAI=VAVDD/2 , short output to AVDD (sinking)	100	150		mA

Low-Voltage Detector						
Reset Threshold	Vrst_th	Falling edge at VIN		2.6		V
Reset mieshold	Vrst_hyst			100		mV
RSTnn Output Voltage	Vrst	ISINK = 1mA			0.4	V
Reset Blanking Time	TBLK			120		ms

Application Information

The EC9223 offers an all-in-one solution for TFT LCD. The chip includes a high-efficiency boost converter with a 20V/1.8A on-chip N-channel transistor for biasing of the LCD, a regulated positive charge pump, a regulated negative charge pump, and a unity-gain VCOM buffer. A voltage detector circuit generates a reset signal when the input voltage falls below 2.6V.

TFT LCD Boost Converter (AVDD)

The LCD panel AVDD supply is generated from a high-efficiency PWM boost converter operating with current mode control, and the switching frequency is 1.2MHz. During the on-period, TON, the synchronous FET connects one end of the inductor to ground, therefore increasing the inductor current. After the FET turns off, the inductor switching node, LX, is charged to a positive voltage by the inductor current. The freewheeling diode turns on and the inductor current flows to the output capacitor. The converter operates in the continuous conduction mode (CCM) when the average input current IIN is at least one-half of the inductor peak- to-peak ripple current, ΔlLPP.

$$I_{IN} \ge \frac{\Delta I_{LPP}}{2}$$
$$\Delta I_{LPP} = \frac{(AVDD - V_{IN}) \times V_{IN}}{L \times F_{OSC} \times AVDD}$$

The output voltage, AVDD, is determined by the duty cycle, D, of the power FET on-time and the input voltage, V_{IN} .

$$AVDD = \frac{V_{IN}}{1 - D}$$

The average load current, ILOAD, can be calculated from the power conservation law.

$$\eta \times V_{\text{IN}} \times I_{\text{IN}} = AVDD \times I_{\text{LOAD}}$$

where η is the power conversion efficiency. For a lower load current, the inductor current would decay to zero during the freewheeling period and the output node would be disconnected from the inductor for the remaining portion of the switching period. The converter would operate in the discontinuous conduction mode (DCM). Current mode control is well known for its robustness and fast transient response. An inner current feedback loop sets the on-time and the duty cycle such that the current through the inductor equals to the current computed by the compensator. This loop acts within one switching cycle. A slope compensation ramp is added to suppress sub-harmonic oscillations. An outer voltage feedback loop subtracts the voltage on the FB pin from the internal reference voltage and feeds the difference to the compensator operational transconductance (Gm) amplifier. This amplifier is compensated by an external R-C network to allow the user to optimize the transient response and loop stability for the specific application conditions.

Compensation

This current mode boost converter has a current sense loop and a voltage feedback loop. The current sense loop does not need any compensation. The voltage feedback loop is compensated by an external series R-C network RCOMP and CCOMP from COMP pin to ground. RCOMP sets the high-frequency loop gain and the unity gain bandwidth of the loop which determines the transient response. CCOMP together with RCOMP determine the phase margin which relates to loop stability.

Output Capacitor Selection

The output voltage ripple due to converter switching is determined by the output capacitor total capacitance, Cout, and the output capacitor total effective series resistance, ESR.

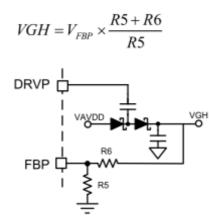
$$AVDD_{RIPPLE} = \frac{D \times I_{LOAD}}{F_{OSC} \times C_{OUT}} + I_{PK} \times ESR$$
$$I_{PK} = I_{IN} + \frac{\Delta I_{LPP}}{2}$$

The first ripple component can be reduced by increasing Cout. Changing Cout may require adjustment of compensation R and C in order to provide adequate phase margin and loop bandwidth. The second ripple component can be reduced by selecting low-ESR ceramic capacitors and using several smaller capacitors in parallel instead of just one large capacitor.

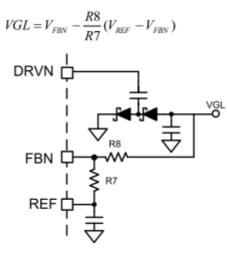
Inductor Selection

To prevent magnetic saturation of the inductor core the inductor has to be rated for a maximum current larger than IPK in a given application. Since the chip provides current limit protection of 1.8A (typ) it is generally recommended that the inductor be rated at least for 1.8A. Selection of the inductor requires trade-off between the physical size (footprint x height) and its electrical properties (current rating, inductance, resistance). Within a given footprint and height, an inductor with larger inductance typically comes with lower current rating and often larger series resistance. Larger inductance typically requires more turns on the winding, a smaller core gap or a core material with a larger relative permeability. An inductor with a larger physical size has better electrical properties than a smaller inductor.

It is desirable to reduce the ripple current Δ ILPP in order to reduce voltage noise on the input and output capacitors. In practice, the inductor is often much larger than the capacitors and it is easier and cheaper to increase the size of the capacitors. The ripple current Δ ILPP is then chosen the largest possible while at the same time not degrading the maximum input and output current that the converter can operate with before reaching the current limit of the chip or the rated current of the inductor.


$$I_{PK} = I_{IN} + \frac{\Delta I_{LPP}}{2} \le I_{MAX}$$

For example, ΔI_{LPP} could be set to 20% of IMAX.



Positive Charge Pump (VGH)

The positive charge pump is used to generate the TFT LCD gate on voltage. The output voltage, VGH, can be set by an external resistive divider. Voltage V_{FBP} is 1.2V. A single stage charge pump can produce an output voltage less than approximately twice the charge pump input voltage AVDD. The output voltage VGH is regulated as the following equation.

The negative charge pump is used to generate the TFT LCD gate off voltage. The output voltage, VGL, is set with an external resistive divider from its output to REF with the midpoint connected to FBN. The error amplifier compares the feedback signal from FBN with an internal reference 240mV. The output voltage VGL is regulated as the following equation. VREF is 1.2V.

VCOM Buffer

The Vcom buffer generates the bias supply for the back plane of an LCD screen which is capacitively coupled to the pixel drive voltage. The purpose of the Vcom buffer is to hold the bias voltage steady while pixel voltage changes dynamically. The buffer is designed to sustain up to ± 75 mA of output current. In transients, it can deliver up to 150mA at which point the over current protection circuit limits the output current. Excessive current draw over a period of time may cause the chip temperature to rise and set off the over temperature protection circuit.

Under Voltage Protection

During normal operation (after completing the soft start sequence) EC9223 constantly monitors feedback pins FB, FBP and FBN. A fault condition occurs if FB falls below 0.95V or FBP falls below 0.95V or FBN rises above 0.45V. If any of the fault conditions persist for longer than 100ms, the chip sets a fault latch and shuts down. To turn the power supplies back on requires cycling of VIN supply below the UVLO level or toggling the EN pin low and high. This will clear the fault latch and restore normal operation.

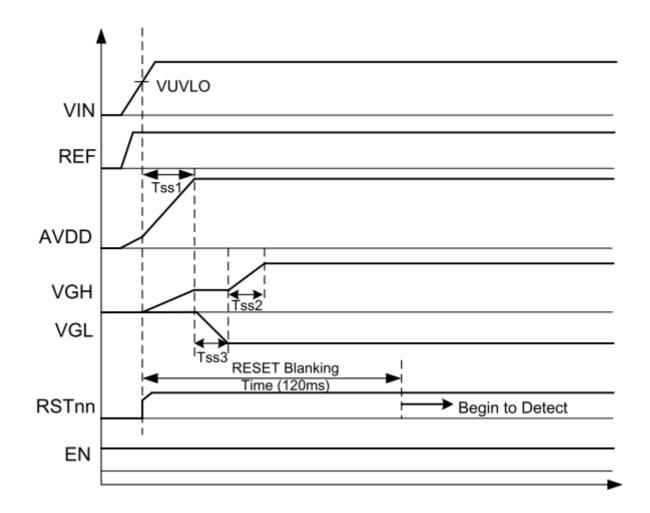
Over Current Protection

The EC9223 has Over-Current Protection (OCP) that limits the peak inductor current in every switching cycle. It prevents large current from damaging the inductor and diode. Once the inductor current exceeds the current limit, the internal switch turns off immediately and shortens the duty cycle. The output voltage drops if the over-current condition occurs. Current limit is affected by the input voltage, duty cycle, and inductor value.

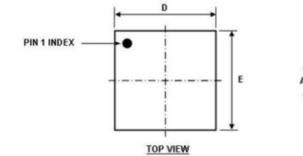
Thermal-Overload Protection

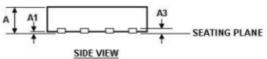
The EC9223 boost converter provides Thermal-overload Protection to prevents excessive power dissipation from overheating the IC. When the junction temperature exceeds $T_J = 150$ °C, a thermal sensor activates the fault protection, which shuts down all outputs. To resume normal operation the chip internal temperature must drop at least by 15°C. In addition, either the input supply must be cycled below the UVLO level or the EN pin must be toggled low and high to clear the fault latch.

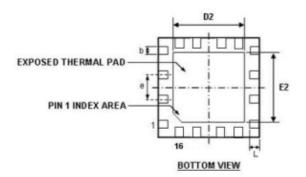
Voltage Detector Circuit


The internal voltage detector circuit monitors the chip input voltage VIN. The chip can either drive RSTnn pin low or leave it floating. While floating, RSTnn is pulled high by an external pull up resistor. When VIN drops below 2.6V the chip pulls RSTnn pin low. In order to release RSTnn the VIN voltage must rise above 2.7V. The voltage detector circuit is disabled and RSTnn is floating while the chip is disabled and for 123ms from the time the chip is enabled (VIN>UVLO and EN is high).

Start-Up and Power-Off Control


The EC9223 employs EN pin to control the whole chip. Pulling EN high enables this device. When EN goes high, once reference voltage is ready, the boost convertor starts operating. To limit the supply inrush current during start up conditions, an internal soft-start circuitry is implemented. The soft-start circuitry will slowly ramp up the output voltage during soft-start period, the soft-start period is 7ms for AVDD and 5ms for VGH and VGL. The EC9223 shuts down to reduce the supply current when EN is low. In this mode, all the internal blocks turn off, and the n-channel MOSFET is turned off as well. The boost convertor's output is connected to VIN by the external inductor and rectifier diode.




Startup Sequence

Package Information (WQFN-16 3x3 mm)

DIMENSION	MIN (mm)	MAX (mm)		
A	0.70	0.80		
A1	0.00	0.05		
A3	0.20 REF			
b	0.18 0.30			
D	3.00 BSC			
D2	1.60	1.80		
E	3.00 BSC			
E2	1.60	1.80		
е	0.50 BSC			
L	0.30 0.45			

Notes:

1) All dimensions are in millimeters.