FEATURES

Supports data rates from dc up to 32 Gbps
Protocol and data rate agnostic
Low latency (<170 ps)
Integrated AGC with differential sensitivity of < $\mathbf{5 0} \mathbf{~ m V}$
Up to $\mathbf{2 0} \mathbf{d B}$ programmable multiple unit interval input equalization
Extended chromatic and polarization mode dispersion tolerance
Programmable differential output amplitude control of up to 600 mV
Single 3.3 V supply eliminating external regulators
Wide temperature range from $-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$
$5 \mathrm{~mm} \times 5 \mathrm{~mm}$, 32-lead LFCSP package

APPLICATIONS

40 Gbps/100 Gbps DQPSK direct detection receivers
Short and long reach CFP2 and QSFP+ modules
CEI-28G MR and CEI-25G LR 100 GE line cards
16 Gbps and 32 Gbps Fibre Channel
Infiniband 14 Gbps FDR and 28 Gbps EDR rates
Signal conditioning for backplane and line cards
Broadband test and measurement equipment

GENERAL DESCRIPTION

The HMC6545 is a low power, high performance, fully programmable, dual-channel, asynchronous advanced linear equalizer that operates at data rates of up to 32 Gbps . The HMC6545 is protocol and data rate agnostic, and it can operate on the transmit path to predistort a transmitted signal to invert channel distortion or on the receiver path to equalize the distorted and attenuated received signal. The HMC6545 is effective in dealing with chromatic and polarization mode dispersion and intersymbol interference (ISI) caused by a wide variety of transmission media (backplane or fiber) and channel lengths.
The HMC6545 consists of an automatic gain control (AGC); dc offset correction circuitry; a 9-tap, 18 ps spaced feedforward equalizer (FFE); a summing node; and a linear programmable output driver. The input AGC linearly attenuates or amplifies the distorted input signal to generate a constant voltage at the

FUNCTIONAL BLOCK DIAGRAM

input of the FFE. The 9-tap FFE is programmed via 2-wire interface to generate wide range frequency responses that are precursor or postcursor in nature for compensating signal impairments. After FFE tap coefficients are summed at the summing node, the signal is received by a linear output driver. DC offset correction circuitry is controlled either automatically or manually via Forward Error Correction (FEC).
All high speed differential inputs and outputs of the HMC6545 are current mode logic (CML) and terminated on chip with 50Ω to the positive supply, 3.3 V , and can be dc-coupled or ac-coupled. The inputs and outputs of the HMC6545 can be operated either differentially or single-ended. The low power, high performance, and feature rich HMC6545 is packaged in a $5 \mathrm{~mm} \times 5 \mathrm{~mm}$, 32-lead LFCSP package. The device uses a single 3.3 V supply, eliminating external regulators. The HMC6545 operates over a $-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$ temperature range.

Rev. A
Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 O2015 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

TABLE OF CONTENTS

Features 1
Applications 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
DC Electrical Characteristics 3
AC Electrical Characteristics 3
Absolute Maximum Ratings 5
ESD Caution 5
Pin Configuration and Function Descriptions 6
Interface Schematics. 7
Typical Performance Characteristics 8
Theory of Operation 11
Input Receiver 11
FFE Delay Line 11
Output Driver 12
2-Wire Serial Port 12
Register Map 15
Register List Summary and Register Descriptions 15
Evaluation Printed Circuit Board (PCB) 21
Evaluation Kit Contents 21
Outline Dimensions 23
Ordering Guide 23

REVISION HISTORY

10/15—Revision A: Initial Version

SPECIFICATIONS

DC ELECTRICAL CHARACTERISTICS

Unless otherwise noted, typical values at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Table 1.

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
POWER CONSUMPTION Supply Voltage Supply Current Power-Down Supply Current DC Offset Correction Automatic Manual	V_{cc} $\mathrm{I}_{\text {CCMAX }}$ $I_{\text {cCmin }}$	Single channel; all tap amplifiers active Single channel; single-tap amplifier active At maximum AGC gain	3.00 $\begin{aligned} & -60 \\ & -60 \end{aligned}$	$\begin{aligned} & 3.30 \\ & 130 \\ & 93 \\ & 17 \end{aligned}$	$\begin{aligned} & 3.45 \\ & 150 \\ & \\ & +60 \\ & +60 \end{aligned}$	V mA mA mA mV mV
CML INPUT PORT (INPO, INNO, INP1, INN1) Input Termination	$\mathrm{R}_{1 \text { N }}$	Differential input resistance	80	100	120	Ω
```CML OUTPUT PORT (OUTP0, OUTN0, OUTP1, OUTN1) Output Termination Output Level High Output```	$\mathrm{R}_{\text {out }}$ $\begin{aligned} & \mathrm{V}_{\mathrm{OH}} \\ & \mathrm{~V}_{\mathrm{OL}} \end{aligned}$	Single-ended output resistance	45   $\mathrm{V}_{\text {cc }}$	55	65 $\mathrm{V}_{\mathrm{cc}}-0.5$	$\Omega$   V   V
```CMOS INPUT (SDA, SCL, \overline{RST}, REGSELO, REGSEL1) Input Voltage Level High Input Input Current```	$\mathrm{V}_{\mathrm{IH}}$   $\mathrm{V}_{\text {IL }}$   $I_{I t} I_{I H}$	$\mathrm{V}_{\text {IL }}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {IH }}=\mathrm{V}_{\text {CC }}$	$\begin{aligned} & V_{\text {CC }}-1.3 \\ & -100 \end{aligned}$		$\begin{aligned} & 0.8 \\ & +100 \end{aligned}$	V   V   $\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS

Unless otherwise noted, typical values at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Table 2.

| Parameter | Test Conditions/Comments | Min | Typ | Max |
| :--- | :--- | :--- | :--- | :--- | Unit

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
NOISE CHARACTERISTICS					
Channel to Channel Isolation	Up to 32 GHz		30		dB
Total Harmonic Distortion	AGC $=2$, for differential input voltage $\leq 250 \mathrm{mV}$ p-p			5	\%
Output Driver Rise/Fall Time	20\% to 80\%		16		ps
Additive RMS Jitter ${ }^{1}$	Input signal: $28 \mathrm{Gbps}, 1010$ pattern; all taps enabled, Tap 4 gain $=63$, gain of all other taps $=0$, predriver gain $=63 ;$ AGC $=2$			0.4	ps
LATENCY				170	ps
DIFFERENTIAL RETURN LOSS	Up to 20 GHz				
Input		-9			dB
Output		-8			dB
NUMBER OF TAPS			9		

${ }^{1}$ Additive rms jitter is calculated by $J_{\text {RMS,DUT }}=\sqrt{ }\left(\left(J_{\text {TESTED }}\right)^{2}-\left(J_{\text {SOURCE }}\right)^{2}\right)$.

ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating
VCC to GND	-0.6 V to +3.6 V
All Pins to GND	-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Operating Ambient Temperature Range	$-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$
Differential Peak-to-Peak Input Voltage	$1.6 \mathrm{~V} \mathrm{p-p}$
\quad Swing	
Maximum Input Voltage at CML Inputs	$\mathrm{V}_{\mathrm{CC}}+0.6 \mathrm{~V}$
Maximum Input Voltage at Digital Inputs	$\mathrm{V}_{\mathrm{CC}}+0.6 \mathrm{~V}$
(SDA, SCL, REGSEL1, REGSELO, $\overline{\mathrm{RST} \text {) }}$	
Maximum Peak Reflow Temperature	$260^{\circ} \mathrm{C}$
Maximum Junction Temperature	$125^{\circ} \mathrm{C}$
Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}\right.$,	1.86 W
\quad Derate 46.59 mW/ ${ }^{\circ} \mathrm{C}$ Above $85^{\circ} \mathrm{C}$)	
Thermal Resistance (Junction to EPAD)	$21.46^{\circ} \mathrm{C} / \mathrm{W}$
ESD Sensitivity, Human Body Model	Class 1 C
\quad (HBM)	

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. Pin Configuration
Table 4. Pin Function Descriptions

Pin Number	Mnemonic	Description
$1,4,5,8,17,20,21,24$	GND	Ground. This pin and the package base must be connected to RF and dc ground.
2,3	INP0, INN0	Differential CML Inputs, Channel 0.
6,7	INP1, INN1	Differential CML Inputs, Channel 1.
9,32	CAGC1, CAGC0	External Capacitor for AGC Bandwidth.
10,16	VCC1	Power Supplies for Channel 1.
11,12	COMPP1, COMPN1	External Capacitors to Cancel DC Offset, Channel 1.
13	SDA	2-Wire Digital Data.
14	SCL	2-Wire Digital Clock.
15	SVCC	Power Supply for Digital Circuitry and Bias.
18,19	OUTN1, OUTP1	Differential CML Data Outputs, Channel 1.
22,23	OUTN0, OUTPO	Differential CML Data Outputs, Channel 0.
25,31	VCC0	Power Supplies for Channel 0.
29,30	COMPN0, COMPP0	External Capacitors to Cancel DC Offset, Channel 0.
26,27	REGSEL0, REGSEL1	Default Coefficient Selection for Channel and 2-Wire Interface Device Address.
28	RST	Reset for 2-Wire Interface.
	EPAD	Exposed Pad. The exposed pad must be connected to RF/dc ground.

INTERFACE SCHEMATICS

Figure 3. GND Interface Schematic

Figure 4. INPx, INNx Interface Schematic

Figure 5. CAGCx Interface Schematic

Figure 7. SDA, SCL Interface Schematic

Figure 8. OUTPx, OUTNx Interface Schematic

Figure 9. REGSELx Interface Schematic

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 10. Supply Current (I ${ }_{D D}$) vs. Enabled Taps Over Supply Voltage

Figure 11. Supply Current (I $I_{D D}$) vs. Enabled Taps Over Enabled Channels

Figure 12. Normalized Linearity vs. Tap Value Over Temperature, Tap 4 Value Is Varied, While Others Are Enabled with No Gain

Figure 13. Supply Current vs. Enabled Taps Over Temperature

Figure 14. Normalized Linearity vs. Tap Value Over Supply Voltage, Tap 4 Value Is Varied, While Others Are Enabled with No Gain

Figure 15. THD vs. Differential Input Amplitude Over Supply Voltage, Tap 4 Gain Is Set to +63 , While Others are Enabled with No Gain

Figure 16. THD vs. Differential Input Amplitude Over Temperature, Tap 4 Gain Is Set to Maximum Gain, While Others Are Enabled with No Gain

Figure 17. THD vs. Predriver Gain, Tap 4 Gain Is Set to Maximum Gain, While Others Are Enabled with No Gain

Figure 18. Small Signal Gain Over Taps, for S21 Line of Each Tap, Relevant Tap Is Set to Maximum Gain While Remaining Taps Are Enabled with No Gain

Figure 19. THD vs. Differential Input Amplitude Over AGC Value, Tap 4 Gain Is Set to Maximum Gain, While Others Are Enabled with No Gain

Figure 20. Differential Output Amplitude vs. Predriver Gain Over AGC, Input Signal: Differential PRBS 231 - 1, 10 Gbps at 500 mV p-p

Figure 21. Input Return Loss

Figure 22. Output Return Loss

Figure 23. Typical Output Waveform at 22 Gbps, PRBS $2^{31}-1$ Input Data, Input Signal $=300 \mathrm{mV}$ p-p Differential

Figure 24. Typical Output Waveform t 28 Gbps, PRBS $2^{31}-1$ Input Data

Figure 25. Typical Output Waveform at 10 Gbps PRBS 231 - 1 Input Data

Figure 26. Typical Output Waveform at 25.8 Gbps, PRBS $2^{31}-1$ Input Data

Figure 27. Typical Output Waveform at 32 Gbps, PRBS $2^{31}-1$ Input Data

THEORY OF OPERATION

The HMC6545 advanced linear equalizer has two symmetrical channels, each containing an input AGC, a 9-tap delay chain with each delay tap connected to a variable tap amplifier, a summation node combining the outputs of the tap amplifiers, and an output driver.

INPUT RECEIVER

AGC

The HMC6545 has an integrated AGC that linearly amplifies/ attenuates the input signal, generating a fixed voltage swing level for further processing in the FFE delay line. An input AGC is required both to supply a well defined voltage swing level to the FFE delay line and to control the internal and external (output) voltage swings because the signal path is linear. The AGC has a sensitivity level of 40 mV p-p differential. The HMC6545 processes the input signal linearly at up to a 600 mV p-p differential input voltage level.
The AGC loop bandwidth and settling time can be changed using an external capacitor connected to the CAGC0/GND and CAGC1/GND nodes. An internal 2.5 pF capacitor at these nodes sets the default AGC settling time to 0.5μ. The evaluation board includes 1 nF capacitors for both channels.

Internal and External Offset Correction Circuitry

The input receiver has two modes of offset correction that can be configured by changing the offset settings register via the 2-wire interface: automatic offset correction and manual offset correction (all registers in Table 5 are identical to each other).

Table 5. Offset Settings Registers

Register	Description
Register 0x0A	Channel 0 Offset Settings, Array A register
Register 0x2A	Channel 0 Offset Settings, Array B register
Register 0x4A	Channel 1 Offset Settings, Array A register
Register 0x6A	Channel 1 Offset Settings, Array B register

By default, the input receiver is configured in the automatic offset correction mode, which can correct up to $\pm 60 \mathrm{mV}$ of input referred dc offset at the worst case AGC gain (maximum AGC gain with a minimum input signal level). The input referred automatic offset correction range changes depending on the AGC gain and increases up to $\pm 180 \mathrm{mV}$ for minimum AGC gain with a maximum signal level at the input of the receiver.

Automatic offset correction loop bandwidth is externally set by a series RC network (for each channel, R1/C1 and R2/C2), and it is recommended to keep the component values as shown in the evaluation board schematic (see Figure 35).

For Channel 1, Array A, automatic offset correction loop can be disabled by setting Register 0x4A, Bit 6 to 0 , which enables the manual offset correction (set Register 0x0A for Channel 0, Array A; Register 0x2A for Channel 0, Array B; and Register 0x6A for Channel 1, Array B; see Table 5). Manual offset correction
amount can be adjusted by configuring Register 0x4A, Bits[5:0], where Register 0 x 4 A , Bit 5 defines the sign and Bits[4:0] define the magnitude of gain (see Table 48). Similar to automatic offset correction mode, manual offset correction dynamic range changes with the AGC gain with the total correction being $\pm 60 \mathrm{mV}$ for maximum AGC gain, which corresponds to about $2 \mathrm{mV} /$ step (5-bit control) adjustment resolution for maximum AGC gain. For minimum AGC gain, the correction dynamic range increases to $\pm 180 \mathrm{mV}$, and the minimum step for adjustment increases to $6 \mathrm{mV} /$ step.

FFE DELAY LINE

The FFE delay line receives an input signal from the AGC (with a controlled magnitude), and this signal propagates along a delay line composed of eight delay elements, where each delay element has 18 ps nominal propagation. The delayed signals are then multiplied by programmable coefficients by the tap amplifiers and summed together. One of the taps near the center can be selected as the main tap. The taps that follow are called postcursor taps, and the taps that precede are called precursor taps.

By combining different tap values, a wide variety of filter transfer functions can be created that can, for example, compensate for the gain or phase distortion of a lossy channel or the chromatic dispersion of an optical channel.
Tap amplifier gains are controlled using the 2 -wire interface with five bits of magnitude resolution with positive or negative polarity. To disable a coefficient, set the gain of the particular tap amplifier to 0 (positive gain sign, and 0 gain setting). In addition, the tap amplifier can be powered down to save power, but this may have an impact on the delay and gain of the remaining taps in the delay chain. See Table 14 to Table 22 and Table 38 to Table 46 for Array A tap amplifier settings for Channel 0 and Channel 1, respectively. For Array B tap amplifier settings, see Table 26 to Table 34 and Table 50 to Table 58 for Channel 0 and Channel 1, respectively.
Each channel has two sets of tap coefficient register arrays (Channel 0, Array A; Channel 0, Array B; Channel 1, Array A; and Channel 1, Array B) that can be configured through the 2-wire interface. Register 0x00 to Register 0x08 set the tap coefficients of Channel 0, Array A. Register 0x20 to Register 0x28 set the tap coefficients of Channel 0, Array B. Register 0x40 to Register 0x48 set the tap coefficients of Channel 1, Array A. Register 0x60 to Register 0x68 set the tap coefficients of Channel 1, Array B. The REGSEL0 and REGSEL1 pins of the device set the default register array (A or B), determining the tap coefficients of a particular channel. For example, applying REGSEL0 $=0$ activates Channel 0 , Array A; and REGSEL1 $=0$ activates Channel 1, Array A. Applying REGSEL0 $=1$ activates Channel 0, Array B; and REGSEL1 = 1 activates Channel 1, Array B.

OUTPUT DRIVER

After the tap amplifier outputs are summed, the combined signal is received by a linear output driver. The output driver consists of two stages. The first stage is a predriver stage providing controllable signal amplification (6-bit resolution) using Register 0x09 (Channel 0, Array A), Register 0x29 (Channel 0, Array B), Register 0x49 (Channel 1, Array A), and Register 0x69 (Channel 1, Array B). Similar to the tap coefficient registers, each predriver has two registers that can be selected asynchronously by the REGSEL0 and REGSEL1 pins. The register values must be configured through the 2 -wire interface prior to the register selection via the REGSEL0 and REGSEL1 pins.
See Table 7 to Table 10 for the predriver settings for Channel 0 and Channel 1.

The final stage of the output driver is a 50Ω CML driver stage that provides the specified linearity (according to the THD specification) up to 600 mV p-p differential output swing. The linearity degrades at higher output swings.

2-WIRE SERIAL PORT

To access all of its internal registers, the HMC6545 uses a 2-wire interface, which consists of a serial data line (SDA) and a serial clock line (SCL). Both SDA and SCL are implemented with open-drain input/output pins and are connected to a positive supply voltage via pull-up resistors.

Typically, a microcontroller, a microprocessor or a digital signal processor acts as a master, controls the bus, and has the responsibility to generate the clock signal and device addresses.
The HMC6545 functions as a slave device. The device address on the HMC6545 is 0×38 (default) and set by connecting the REGSEL0 and REGSEL1 pins to either V_{CC} (Logic 1) or GND (Logic 0) and by writing 1 to Register 0x80, Bit 6. If Register 0x80, Bit $6=0$ (default), the REGSEL0 and REGSEL1 pins select Array A or Array B. If Register 0x80, Bit $6=1$, the REGSEL0 and REGSEL1 pins also determine the 2-wire interface device address according to Table 6.

Table 6. 2-Wire Interface Device Address Setting

REGSEL1	REGSELO	Address Setting (Register 0x80, Bit 6 = 1)
0	0	0×38 (default)
0	1	0×39
1	0	$0 \times 3 \mathrm{~A}$
1	1	$0 \times 3 \mathrm{~B}$

Table 7. Register 0x09-Channel 0 Predriver Settings, Array A Register

Bits	Type	Name	Default	Minimum	Maximum	Description
$[5: 0]$	R/W	Predriver gain	0×30	000000	111111	Channel 0 predriver gain
$[7: 6]$	R/W	Factory set	$0 b 00$			Not used

Table 8. Register 0x29-Channel 0 Predriver Settings, Array B Register

Bits	Type	Name	Default	Minimum	Maximum	Description
$[5: 0]$	R/W	Predriver gain	$0 \times 3 F$	000000	111111	Channel 0 predriver gain
$[7: 6]$	R/W	Factory set	$0 b 00$			Not used

Table 9. Register 0x49-Channel 1 Predriver Settings, Array A Register

Bits	Type	Name	Default	Minimum	Maximum	Description
$[5: 0]$	R/W	Predriver gain	0×30	000000	111111	Channel 1 predriver gain
$[7: 6]$	R/W	Factory set	$0 b 00$			Not used

Table 10. Register 0x69-Channel 1 Predriver Settings, Array B Register

Bits	Type	Name	Default	Minimum	Maximum	Description
$[5: 0]$	R/W	Predriver gain	$0 \times 3 \mathrm{~F}$	000000	111111	Channel 1 predriver gain
$[7: 6]$	R/W	Factory set	$0 b 00$			Not used

Protocol

Table 11 lists the definitions and conditions occurring in a 2-wire data transfer.

Figure 28 shows a representation of a complete communication cycle on the 2-wire interface.
The master generates a start condition to indicate the beginning of a new data transfer.

The master then starts generating clock pulses on SCL and transmits the first byte on SDA. This first byte always consists of a 7-bit slave address followed by one bit that indicates the read/ write direction $(\mathrm{R} / \overline{\mathrm{W}})$. The device on the bus with a matching address generates an acknowledge.
The master continues generating more clock pulses on SCL and, depending on the value of the R/W bit, sends (write operation, $\mathrm{R} / \overline{\mathrm{W}}=0$) or receives (read operation, $\mathrm{R} / \overline{\mathrm{W}}=1$) data on SDA. In each case, the receiver must acknowledge the data sent by the transmitter. This sequence of 8-bit data followed by a 1-bit acknowledge can be repeated multiple times.

When all data communication is over for the current transfer cycle, the master indicates the end of data transfer by generating a stop condition.

Data Transfer Formats

Write Cycle

In a write cycle, the master transmitter sends data to the slave receiver. The transfer direction is from master to slave and does not change (see Figure 29). The master generates a start condition followed by a 7 -bit slave address and by the $\mathrm{R} / \overline{\mathrm{W}}$ bit set to 0 . The slave with a matching address replies with an acknowledge. The master then transmits the first byte to the slave device. This first byte is an address of the internal registers of the slave. The slave device replies with an acknowledge bit. For a subsequent read cycle, the master generates a stop bit; otherwise, the master then transmits the next byte, which is a data byte to be stored in the internal slave register previously addressed. This data byte is followed by an acknowledge bit from the slave. This process can continue for multiple bytes, and the slave device increments its internal register address count as it receives subsequent bytes from the master. When all data transfer is over, the master generates a stop condition to end the cycle.

Table 11. 2-Wire Data Transfer Terminology and Definitions

Term	Definition
Start	A start condition is always generated by the master and is defined as a high to low transition on the SDA line while SCL is high. The bus becomes busy after a start condition. A stop condition is always generated by the master and is defined as a low to high transition on the SDA line while SCL is high. The bus becomes free after the stop condition occurs.
Stop	Every byte transmitted on SDA must be eight bits long and is transferred with the most significant bit (MSB) first. Each byte must be followed by an acknowledge bit.
Data Valid Condition For data to be considered valid, the SDA line must be stable during the entire high period of its respective clock pulse.	For each byte sent or received on the bus, the master generates an extra clock cycle that is used for acknowledgement, for a total of nine bits. The transmitter releases the SDA line, which is pulled high by the external resistor, and the receiver must pull down the SDA line and drive it low while SCL is high during this entire clock cycle to indicate acknowledgment. SDA is left high during this clock cycle to indicate a no acknowledge (NACK) situation, usually because the device addressed is unable to receive or transmit the data requested.

Figure 28. Complete Data Transfer

Figure 29. Write Cycle

Read Cycle

In a read cycle, the master reads from the slave immediately after the first byte. The direction of data transfer changes between master and slave (see Figure 32). In this case, the R/W bit is set to 1 to indicate that the master reads data from the slave device. The address of the internal register from which the data is to come has been previously set in a precedent write cycle; otherwise, the slave device defaults to Address 0×00. This time, the slave device transmits all the data bytes and the master replies with an acknowledge bit. For the last byte read, the master replies with a no acknowledge bit to indicate to the slave that it must stop transmitting data. The master then generates a stop condition, and the cycle ends.

2-Wire Interface Design Considerations

The HMC6545 2-wire interface slave interface responds to any register address or data matching its chip address even when there is no preceding start condition. A 2-wire interface communication is defined as shown in Figure 30.

START	CHIP ADDRESS + WRITE	ADDRESS BYTE	DATA BYTE	STOP
\begin{tabular}{\|l	l	l	l	l
\hline				
\end{tabular}				
START	CHIP ADDRESS + READ	DATA BYTE	STOP	

Figure 30. 2-Wire Interface Communication
Coincidentally, the data or register address can be the same as the chip address of another device on the same bus. However,
that other device does not respond because there is no preceding start condition.
In the HMC6545, regardless of whether there is a start condition, if the HMC6545 sees a bit stream that corresponds to its chip address, it then responds and causes unwanted results.
There must be only one HMC6545 device on the 2-wire interface bus; otherwise, 2 -wire interface bus multiplexers can be used to isolate the HMC6545 devices. See Figure 33 for an example design.

Reset

A low strobe signal must be sent to the $\overline{\mathrm{RST}}$ pin to reset the registers to their default values. SDA and SCL must be high in the 2 -wire interface bus before and after the rising edge.

Figure 31. Reset Registers

Figure 32. Read Cycle

Figure 33. Multiple HMC6545 Devices on 2-Wire Interface Bus

REGISTER MAP

REGISTER LIST SUMMARY AND REGISTER DESCRIPTIONS

Global Register

Global register bit order is different for read and write operations.
Table 12. Register 0x80-Global Register, Write Operation

Bit	Type	Name	Default	Description		
7	W	Factory set	0	Not used. 2-wire interface device address set. Writing 1 generates a 2-wire interface device address read command.		
5	W	2-wire interface device address read	0	W		
Channel 1 enable	1	Channel 1 enable. Writing 1 enables Channel 1. Channel 0 enable. Writing 1 enables Channel 0.				
3	W	W Channel 0 enable	1	Factory set	$\quad 1 \quad$	Not used.
:---						
2						

Table 13. Register 0x80-Global Register, Read Operation

Bit	Type	Name	Default	Description
7	R	2-wire interface device address, Bit 1	0	Bit 1 of device address
6	R	2-wire interface device address, Bit 0	0	Least significant bit of device address
5	R	Factory set	Not applicable	Not used
4	R	Channel 1 enable	1	Channel 1 enable
3	R	Channel 0 enable	1	Channel 0 enable
2	R	Factory set	Not applicable	Not used
1	R	Channel 1 reset	1	Channel 1 reset
0	R	Factory set	0	Not used

Channel 0, Array A Register Set

Table 14. Register 0x00-Channel 0, Tap 0 Settings, Array A Register

Bit	Type	Name	Default	Description
7	R/W	Tap 0 enable	1	Channel 0 Tap 0 enable.
6	R/W	Tap 0 gain sign	1	Channel 0 Tap 0 gain sign. 1 means positive, 0 means negative.
$[5: 0]$	R/W	Tap 0 gain	0×00	Channel 0 Tap 0 gain.

Table 15. Register 0x01-Channel 0, Tap 1 Settings, Array A Register

Bit	Type	Name	Default	Description
7	R/W	Tap 1 enable	1	Channel 0 Tap 1 enable.
6	R/W	Tap 1 gain sign	1	Channel 0 Tap 1 gain sign. 1 means positive, 0 means negative.
$[5: 0]$	R/W	Tap 1 gain	0×00	Channel 0 Tap 1 gain.

Table 16. Register 0x02-Channel 0, Tap 2 Settings, Array A Register

Bit	Type	Name	Default	Description
7	R/W	Tap 2 enable	1	Channel 0 Tap 2 enable.
6	R/W	Tap 2 gain sign	1	Channel 0 Tap 2 gain sign. 1 means positive, 0 means negative.
$[5: 0]$	R/W	Tap 2 gain	$0 x 00$	Channel 0 Tap 2 gain.

HMC6545

Table 17. Register 0x03-Channel 0, Tap 3 Settings, Array A Register

Bit	Type	Name	Default	Description
7	R/W	Tap 3 enable	1	Channel 0 Tap 3 enable.
6	R/W	Tap 3 gain sign	1	Channel 0 Tap 3 gain sign. 1 means positive, 0 means negative.
$[5: 0]$	R/W	Tap 3 gain	0×00	Channel 0 Tap 3 gain.

Table 18. Register 0x04-Channel 0, Tap 4 Settings, Array A Register

Bit	Type	Name	Default	Description
7	R/W	Tap 4 enable	1	Channel 0 Tap 4 enable.
6	R/W	Tap 4 gain sign	1	Channel 0 Tap 4 gain sign. 1 means positive, 0 means negative.
$[5: 0]$	R/W	Tap 4 gain	$0 \times 3 F$	Channel 0 Tap 4 gain.

Table 19. Register 0x05-Channel 0, Tap 5 Settings, Array A Register

Bit	Type	Name	Default	Description
7	R/W	Tap 5 enable	1	Channel 0 Tap 5 enable.
6	R/W	Tap 5 gain sign	1	Channel 0 Tap 5 gain sign. 1 means positive, 0 means negative.
$[5: 0]$	R/W	Tap 5 gain	0×00	Channel 0 Tap 5 gain.

Table 20. Register 0x06-Channel 0, Tap 6 Settings, Array A Register

Bit	Type	Name	Default	Description
$[5: 0]$	R/W	Tap 6 gain	0×00	Channel 0 Tap 6 gain.
6	R/W	Tap 6 gain sign	1	Channel 0 Tap 6 gain sign. 1 means positive, 0 means negative.
7	R/W	Tap 6 enable	1	Channel 0 Tap 6 enable.

Table 21. Register 0x07-Channel 0, Tap 7 Settings, Array A Register

Bit	Type	Name	Default	Description
7	R/W	Tap 7 enable	1	Channel 0 Tap 7 enable.
6	R/W	Tap 7 gain sign	1	Channel 0 Tap 7 gain sign. 1 means positive, 0 means negative.
$[5: 0]$	R/W	Tap 7 gain	0×00	Channel 0 Tap 7 gain.

Table 22. Register 0x08-Channel 0, Tap 8 Settings, Array A Register

Bit	Type	Name	Default	Description
7	R/W	Tap 8 enable	1	Channel 0 Tap 8 enable.
6	R/W	Tap 8 gain sign	1	Channel 0 Tap 8 gain sign. 1 means positive, 0 means negative.
$[5: 0]$	R/W	Tap 8 gain	$0 x 00$	Channel 0 Tap 8 gain.

Table 23. Register 0x09-Channel 0 Predriver Settings, Array A Register

Bit	Type	Name	Default	Description
$[7: 6]$	R/W	Factory set	$0 b 00$	Not used
$[5: 0]$	R/W	Predriver gain	0×30	Channel 0 predriver gain

Table 24. Register 0x0A-Channel 0 Offset Settings, Array A Register

Bit	Type	Name	Default	Description
7	R/W	Factory set	0	Not used
6	R/W	Automatic offset enable	1	Channel 0 automatic offset enable
5	R/W	Manual offset sign	0	Channel 0 manual offset sign
[4:0]	R/W	Manual offset gain	0×00	Channel 0 manual offset gain

Table 25. Register 0x0B-Channel 0 Internal AGC Amplitude, Array A Register

Bit	Type	Name	Default	Description
$[7: 3]$	R/W	Factory set	0×00	Not used
$[2: 0]$	R/W	Internal AGC amplitude	$0 b 100$	Internal AGC amplitude

Channel 0, Array B Register Set

Table 26. Register 0x20-Channel 0, Tap 0 Settings, Array B Register

Bit	Type	Name	Default	Description
7	R/W	Tap 0 enable	1	Channel 0 Tap 0 enable.
6	R/W	Tap 0 gain sign	1	Channel 0 Tap 0 gain sign. 1 means positive, 0 means negative.
[5:0]	R/W	Tap 0 gain	0×00	Channel 0 Tap 0 gain.

Table 27. Register 0x21-Channel 0, Tap 1 Settings, Array B Register

Bit	Type	Name	Default	Description
7	R/W	Tap 1 enable	1	Channel 0 Tap 1 enable.
6	R/W	Tap 1 gain sign	0	Channel 0 Tap 1 gain sign. 1 means positive, 0 means negative.
$[5: 0]$	R/W	Tap 1 gain	0×04	Channel 0 Tap 1 gain.

Table 28. Register 0x22-Channel 0, Tap 2 Settings, Array B Register

Bit	Type	Name	Default	Description
7	R/W	Tap 2 enable	1	Channel 0 Tap 2 enable.
6	R/W	Tap 2 gain sign	1	Channel 0 Tap 2 gain sign. 1 means positive, 0 means negative.
[5:0]	R/W	Tap 2 gain	$0 \times 3 F$	Channel 0 Tap 2 gain.

Table 29. Register 0x23-Channel 0, Tap 3 Settings, Array B Register

Bit	Type	Name	Default	Description
7	R/W	Tap 3 enable	1	Channel 0 Tap 3 enable.
6	R/W	Tap 3 gain sign	0	Channel 0 Tap 3 gain sign. 1 means positive, 0 means negative.
[5:0]	R/W	Tap 3 gain	0×28	Channel 0 Tap 3 gain.

Table 30. Register 0x24-Channel 0, Tap 4 Settings, Array B Register

Bit	Type	Name	Default	Description
7	R/W	Tap 4 enable	1	Channel 0 Tap 4 enable.
6	R/W	Tap 4 gain sign	0	Channel 0 Tap 4 gain sign. 1 means positive, 0 means negative.
$[5: 0]$	R/W	Tap 4 gain	0×04	Channel 0 Tap 4 gain.

Table 31. Register 0x25-Channel 0, Tap 5 Settings, Array B Register

Bit	Type	Name	Default	Description
7	R/W	Tap 5 enable	1	Channel 0 Tap 5 enable.
6	R/W	Tap 5 gain sign	1	Channel 0 Tap 5 gain sign. 1 means positive, 0 means negative.
[5:0]	R/W	Tap 5 gain	0×00	Channel 0 Tap 5 gain.

Table 32. Register 0x26, Channel 0, Tap 6 Settings, Array B Register

Bit	Type	Name	Default	Description
7	R/W	Tap 6 enable	1	Channel 0 Tap 6 enable.
6	R/W	Tap 6 gain sign	1	Channel 0 Tap 6 gain sign. 1 means positive, 0 means negative.
$[5: 0]$	R/W	Tap 6 gain	$0 x 00$	Channel 0 Tap 6 gain.

Table 33. Register 0x27-Channel 0, Tap 7 Settings, Array B Register

Bit	Type	Name	Default	Description
7	R/W	Tap 7 enable	1	Channel 0 Tap 7 enable.
6	R/W	Tap 7 gain sign	1	Channel 0 Tap 7 gain sign. 1 means positive, 0 means negative.
$[5: 0]$	R/W	Tap 7 gain	0×00	Channel 0 Tap 7 gain.

Table 34. Register 0x28-Channel 0, Tap 8 Settings, Array B Register

Bit	Type	Name	Default	Description
7	R/W	Tap 8 enable	1	Channel 0 Tap 8 enable.
6	R/W	Tap 8 gain sign	1	Channel 0 Tap 8 gain sign. 1 means positive, 0 means negative.
$[5: 0]$	R/W	Tap 8 gain	0×00	Channel 0 Tap 8 gain.

Table 35. Register 0x29-Channel 0 Predriver Settings, Array B Register

Bit	Type	Name	Default	Description
$[7: 6]$	R/W	Factory set	$0 b 00$	Not used
$[5: 0]$	R/W	Predriver gain	$0 \times 3 F$	Channel 0 predriver gain

Table 36. Register 0x2A-Channel 0 Offset Settings, Array B Register

Bit	Type	Name	Default	Description
7	R/W	Factory set	0	Not used
6	R/W	Automatic offset enable	1	Channel 0 automatic offset enable
5	R/W	Manual offset sign	0	Channel 0 manual offset sign
[4:0]	R/W	Manual offset gain	0×00	Channel 0 manual offset gain

Table 37. Register 0x2B-Channel 0 Internal AGC Amplitude, Array B Register

Bit	Type	Name	Default	Description
$[7: 3]$	R/W	Factory set	0×00	Not used
$[2: 0]$	R/W	Internal AGC amplitude	$0 b 100$	Internal AGC amplitude

Channel 1, Array A Register Set

Table 38. Register 0x40—Channel 1, Tap 0 Settings, Array A Register

Bit	Type	Name	Default	Description
7	R/W	Tap 0 enable	1	Channel 1 Tap 0 enable.
6	R/W	Tap 0 gain sign	1	Channel 1 Tap 0 gain sign. 1 means positive, 0 means negative.
$[5: 0]$	R/W	Tap 0 gain	0×00	Channel 1 Tap 0 gain.

Table 39. Register 0x41—Channel 1, Tap 1 Settings, Array A Register

Bit	Type	Name	Default	Description
7	R/W	Tap 1 enable	1	Channel 1 Tap 1 enable.
6	R/W	Tap 1 gain sign	1	Channel 1 Tap 1 gain sign. 1 means positive, 0 means negative.
$[5: 0]$	R/W	Tap 1 gain	0×00	Channel 1 Tap 1 gain.

Table 40. Register 0x42-Channel 1, Tap 2 Settings, Array A Register

Bit	Type	Name	Default	Description
7	R/W	Tap 2 enable	1	Channel 1 Tap 2 enable.
6	R/W	Tap 2 gain sign	1	Channel 1 Tap 2 gain sign. 1 means positive, 0 means negative.
$[5: 0]$	R/W	Tap 2 gain	0×00	Channel 1 Tap 2 gain.

Table 41. Register 0x43-Channel 1, Tap 3 Settings, Array A Register

Bit	Type	Name	Default	Description
7	R/W	Tap 3 enable	1	Channel 1 Tap 3 enable.
6	R/W	Tap 3 gain sign	1	Channel 1 Tap 3 gain sign. 1 means positive, 0 means negative.
$[5: 0]$	R/W	Tap 3 gain	0×00	Channel 1 Tap 3 gain.

Table 42. Register 0x44-Channel 1, Tap 4 Settings, Array A Register

Bit	Type	Name	Default	Description
7	R/W	Tap 4 enable	1	Channel 1 Tap 4 enable.
6	R/W	Tap 4 gain sign	1	Channel 1 Tap 4 gain sign. 1 means positive, 0 means negative.
$[5: 0]$	R/W	Tap 4 gain	$0 x 1 F$	Channel 1 Tap 4 gain.

Table 43. Register 0x45-Channel 1, Tap 5 Settings, Array A Register

Bit	Type	Name	Default	Description
7	R/W	Tap 5 enable	1	Channel 1 Tap 5 enable.
6	R/W	Tap 5 gain sign	1	Channel 1 Tap 5 gain sign. 1 means positive, 0 means negative.
$[5: 0]$	R/W	Tap 5 gain	0×00	Channel 1 Tap 5 gain.

Table 44. Register 0x46-Channel 1, Tap 6 Settings, Array A Register

Bit	Type	Name	Default	Description
7	R/W	Tap 6 enable	1	Channel 1 Tap 6 enable.
6	R/W	Tap 6 gain sign	1	Channel 1 Tap 6 gain sign. 1 means positive, 0 means negative.
[5:0]	R/W	Tap 6 gain	0×00	Channel 1 Tap 6 gain.

Table 45. Register 0x47-Channel 1, Tap 7 Settings, Array A Register

Bit	Type	Name	Default	Description
7	R/W	Tap 7 enable	1	Channel 1 Tap 7 enable.
6	R/W	Tap 7 gain sign	1	Channel 1 Tap 7 gain sign. 1 means positive, 0 means negative.
$[5: 0]$	R/W	Tap 7 gain	0×00	Channel 1 Tap 7 gain.

Table 46. Register 0x48-Channel 1, Tap 8 Settings, Array A Register

Bit	Type	Name	Default	Description
7	R/W	Tap 8 enable	1	Channel 1 Tap 8 enable.
6	R/W	Tap 8 gain sign	1	Channel 1 Tap 8 gain sign. 1 means positive, 0 means negative.
$[5: 0]$	R/W	Tap 8 gain	$0 x 00$	Channel 1 Tap 8 gain.

Table 47. Register 0x49-Channel 1 Predriver Settings, Array A Register

Bit	Type	Name	Default	Description
$[7: 6]$	R/W	Factory set	$0 b 00$	Not used
$[5: 0]$	R/W	Predriver gain	0×30	Channel 1 predriver gain

Table 48. Register 0x4A-Channel 1 Offset Settings, Array A Register

Bit	Type	Name	Default	Description
7	R/W	Factory set	0	Not used
6	R/W	Automatic offset enable	1	Channel 0 automatic offset enable
5	R/W	Manual offset sign	0	Channel 0 manual offset sign
$[4: 0]$	R/W	Manual offset gain	0×00	Channel 0 manual offset gain

Table 49. Register 0x4B-Channel 1 Internal AGC Amplitude, Array A Register

Bit	Type	Name	Default	Description
$[7: 3]$	R/W	Factory set	0×00	Not used
$[2: 0]$	R/W	Internal AGC amplitude	$0 b 100$	Internal AGC amplitude

Channel 1, Array B Register Set

Table 50. Register 0x60-Channel 1, Tap 0 Settings, Array B Register

Bit	Type	Name	Default	Description
7	R/W	Tap 0 enable	1	Channel 1 Tap 0 enable.
6	R/W	Tap 0 gain sign	1	Channel 1 Tap 0 gain sign. 1 means positive, 0 means negative.
$[5: 0]$	R/W	Tap 0 gain	0×00	Channel 1 Tap 0 gain.

Table 51. Register 0x61-Channel 1, Tap 1 Settings, Array B Register

Bit	Type	Name	Default	Description
7	R/W	Tap 1 enable	1	Channel 1 Tap 1 enable.
6	R/W	Tap 1 gain sign	0	Channel 1 Tap 1 gain sign. 1 means positive, 0 means negative.
$[5: 0]$	R/W	Tap 1 gain	0×04	Channel 1 Tap 1 gain.

Table 52. Register 0x62-Channel 1, Tap 2 Settings, Array B Register

Bit	Type	Name	Default	Description
7	R/W	Tap 2 enable	1	Channel 1 Tap 2 enable.
6	R/W	Tap 2 gain sign	1	Channel 1 Tap 2 gain sign. 1 means positive, 0 means negative.
[5:0]	R/W	Tap 2 gain	$0 \times 3 F$	Channel 1 Tap 2 gain.

HMC6545

Table 53. Register 0x63-Channel 1, Tap 3 Settings, Array B Register

Bit	Type	Name	Default	Description
7	R/W	Tap 3 enable	1	Channel 1 Tap 3 enable.
6	R/W	Tap 3 gain sign	0	Channel 1 Tap 3 gain sign. 1 means positive, 0 means negative.
$[5: 0]$	R/W	Tap 3 gain	0×28	Channel 1 Tap 3 gain.

Table 54. Register 0x64-Channel 1, Tap 4 Settings, Array B Register

Bit	Type	Name	Default	Description
7	R/W	Tap 4 enable	1	Channel 1 Tap 4 enable.
6	R/W	Tap 4 gain sign	0	Channel 1 Tap 4 gain sign. 1 means positive, 0 means negative.
$[5: 0]$	R/W	Tap 4 gain	0×04	Channel 1 Tap 4 gain.

Table 55. Register 0x65-Channel 1, Tap 5 Settings, Array B Register

Bit	Type	Name	Default	Description
7	R/W	Tap 5 enable	1	Channel 1 Tap 5 enable.
6	R/W	Tap 5 gain sign	1	Channel 1 Tap 5 gain sign. 1 means positive, 0 means negative.
$[5: 0]$	R/W	Tap 5 gain	0×00	Channel 1 Tap 5 gain.

Table 56. Register 0x66-Channel 1, Tap 6 Settings, Array B Register

Bit	Type	Name	Default	Description
7	R/W	Tap 6 enable	1	Channel 1 Tap 6 enable.
6	R/W	Tap 6 gain sign	1	Channel 1 Tap 6 gain sign. 1 means positive, 0 means negative.
[5:0]	R/W	Tap 6 gain	0×00	Channel 1 Tap 6 gain.

Table 57. Register 0x67-Channel 1, Tap 7 Settings, Array B Register

Bit	Type	Name	Default	Description
7	R/W	Tap 7 enable	1	Channel 1 Tap 7 enable.
6	R/W	Tap 7 gain sign	1	Channel 1 Tap 7 gain sign. 1 means positive, 0 means negative.
$[5: 0]$	R/W	Tap 7 gain	0×00	Channel 1 Tap 7 gain.

Table 58. Register 0x68-Channel 1, Tap 8 Settings, Array B Register

Bit	Type	Name	Default	Description
7	R/W	Tap 8 Enable	1	Channel 1 Tap 8 enable.
6	R/W	Tap 8 Gain Sign	1	Channel 1 Tap 8 gain sign. 1 means positive, 0 means negative.
$[5: 0]$	R/W	Tap 8 Gain	0×00	Channel 1 Tap 8 gain.

Table 59. Register 0x69-Channel 1 Predriver Settings, Array B Register

Bit	Type	Name	Default	Description
$[7: 6]$	R/W	Factory set	$0 b 00$	Not used
$[5: 0]$	R/W	Predriver gain	$0 \times 3 F$	Channel 1 predriver gain

Table 60. Register 0x6A-Channel 1 Offset Settings, Array B Register

Bit	Type	Name	Default	Description
7	R/W	Factory set	0	Not used
6	R/W	Automatic offset enable	1	Channel 1 automatic offset enable
5	R/W	Manual offset sign	0	Channel 1 manual offset sign
$[4: 0]$	R/W	Manual offset gain	0×00	Channel 1 manual offset gain

Table 61. Register 0x6B—Channel 1 Internal AGC Amplitude, Array B Register

Bit	Type	Name	Default	Description
$[7: 3]$	R/W	Factory set	0×00	Not used
$[2: 0]$	R/W	Internal AGC amplitude	$0 b 100$	Internal AGC amplitude

Data Sheet

EVALUATION PRINTED CIRCUIT BOARD (PCB)

EVALUATION KIT CONTENTS

The HMC6545 evaluation PCB kit, EKIT01-HMC6545LP5, includes the following components:

- 6-foot USB 2.0, Type A male to Type B male cable
- User software CD-ROM

The CD-ROM contains user software, an evaluation PCB schematic, and a user manual.

To order the evaluation kit, see the Ordering Guide section.

Figure 35. Evaluation Board Schematic

OUTLINE DIMENSIONS

HHE EXPOSR CONNECTION OF
THE PIN CONFIGURATION AND
FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.

COMPLIANT TO JEDEC STANDARDS MO-220-VHHD-4.
Figure 36.32-Lead Lead Frame Chip Scale Package [LFCSP]
$5 \mathrm{~mm} \times 5 \mathrm{~mm}$ Body and 0.90 mm Package Height (HCP-32-1)
Dimensions shown in millimeters
ORDERING GUIDE

Model	Temperature Range	Package Description	Lead Finish	MSL Rating ${ }^{1}$	Package Marking $^{\mathbf{2}}$	Package Option
HMC6545LP5E	$-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$	$32-L e a d ~ L e a d ~ F r a m e ~ C h i p ~ S c a l e ~$ Package [LFCSP]	100% matte Sn	MSL1	$\frac{\mathrm{H} 6545}{\mathrm{XXXX}}$	HCP-32-1
HMC6545LP5ETR	$-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$	32 -Lead Lead Frame Chip Scale Package [LFCSP]	100% matte Sn	MSL1	$\frac{\mathrm{H} 6545}{\mathrm{XXXX}}$	HCP-32-1
EKIT01-HMC6545LP5		Evaluation Kit				

${ }^{1}$ Maximum peak reflow temperature of $260^{\circ} \mathrm{C}$.
${ }^{2} \mathrm{XXXX}$ is the four-digit lot number.

