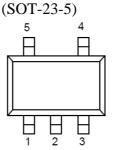


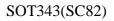
Introduction (General Description)

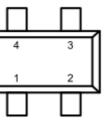
The EC9509C / 08C Series is a high-precision voltage detector developed using CMOS process. The detection voltage is fixed internally with an accuracy of ± 2.0 %. A time delayed reset can be accomplished with the addition of an external capacitor. Two output forms, N-channel open-drain and CMOS output, are available.

Features

- Ultra-low current consumption
 - 1.0 mA typ. (VDD=2.0 V)
 - 1.1 mA typ. (VDD=3.5 V)
- High-precision detection voltage ±2.0 %
- COperating voltage range 2.0 V to 6.0 V
- Detection voltage 2.2 V to 3.1 V (0.1 V step)
- Hysteresis characteristics 5 % typ.
- Two output forms: CMOS output active "L" Open-drain output active "L"

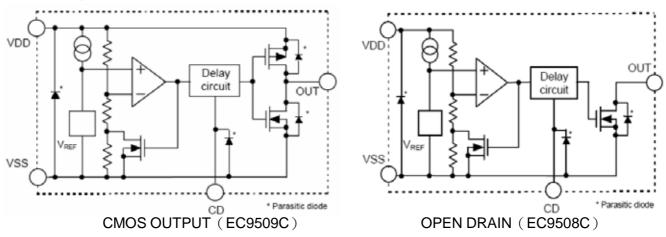

Applications


- Power supply monitor for portable equipment such as electronic organizers, notebook PCs, cellular phones, digital cameras
- Constant voltage power monitor for cameras, communication equipment and video equipment
- Power monitor and reset for CPUs and microcomputers

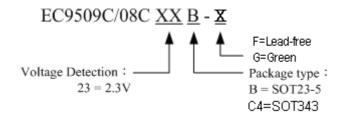

Packages

SOT-23-5 SOT343

Pin Assignment

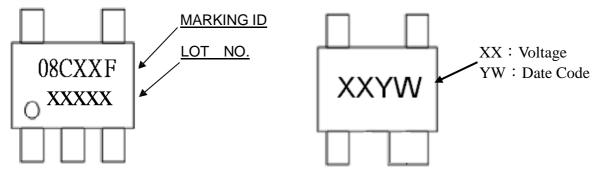


SOT-23-5	SOT343	SYMBOL	DESCRITION	
Pin No	Pin No			
1	4	OUT	VOLTAGE DETECTION PIN	
2	2	VDD	VOLTAGE INPUT PIN	
3	1	VSS	GROUND PIN	
4		N.C	NO CONNECTION	
5	3	CD	CONNECTION PIN DELAY CAPACITOR	



EC9509C/08C

Block Diagrams



Ordering Information

PART NUMBER	MARKING ID	PACKAGE	PACKING TYPE
EC9508C XXB-F	08CXXF	SOT23-5	TAPE / REEL
EC9508C XXB-G	08CXXG	SOT23-5	TAPE / REEL
EC9508CXXC4-G	XXYW	SOT343	TAPE/ REEL
EC9509C XXB-F	09CXXF	SOT23-5	TAPE / REEL
EC9509C XXB-G	09CXXG	SOT23-5	TAPE / REEL

Package Marking Indication SOT-23-5 Marking

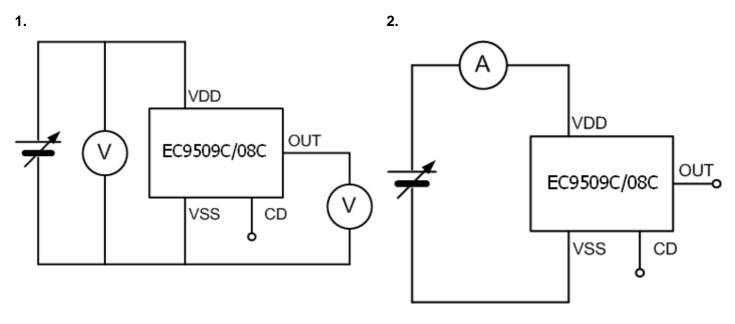
EC9509C/08C

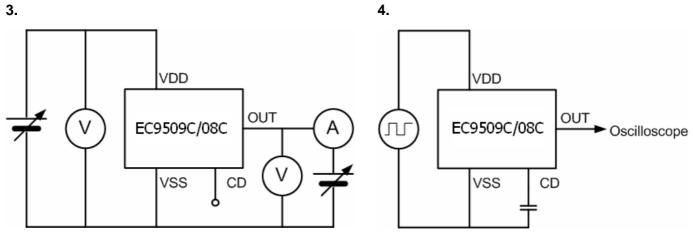
Absolute Maximum Ratings

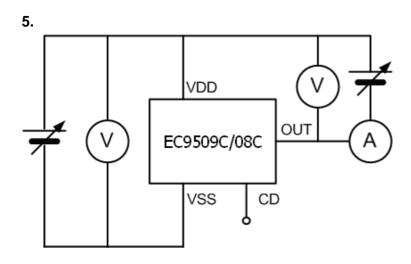
PARAMETER	S	YMBOL	RATING	UNIT		
POWER SUPPLY VOLTAGE	Vdd - Vss		Vdd - Vss		/dd - Vss 8	
CD PIN INPUT VOLTAGE	Vcd		Vcd		Vcd Vss -0.3 TO Vdd +0.3	
OUTPUT VOLTAGE	Vo	UT	Vss -0.3 TO Vdd +0.3	V		
OUTPUT CURRENT	Ιου	т	4	mA		
POWER DISSIPATION	PD	SOT23 -5	500	mW		
		SOT343	250	mW		
OPERATING TEMPERATURE	то	PR	-40 TO +85	°C		
STORAGE TEMPERATURE	ΤS	ГG	-40 TO +125	°C		
JUNCTION TEMPERATURE	Tj(r	max)	150	°C		
JUNCTION TO AMBIENT THERMAL RESISTANCE	θја		347	°C/W		
JUNCTION TO CASE THERMAL RESISTANCE	Ѳјс		148	°C/W		

Electrical Characteristics

CMOS output products

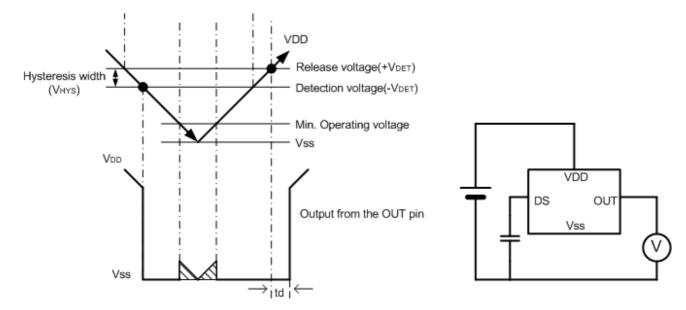

(Ta=25°C unless otherwise specified)

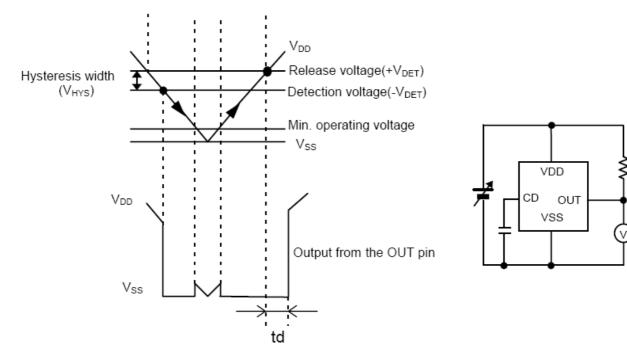

Parameter	Symbol	Conditions		Min	Тур	Мах	Unit	Test circuit
Detection voltage	-Vdet			-VDET(S) X 0.98	-Vdet	-VDET(S) X 1.02	V	1
Hysteresis width	VHYS			-Vdet X0.03	-VDET X0.05	-Vdet X0.08	V	1
Current consumption	Iss	VDD=4V			4.5	6.5	uA	2
Operating voltage	Vdd			2.0		6.0	V	1
Output Current of output transistor	Ιουτ	N-channel VDS=0.5V VDD= 2.4V		2.88	4.98		mA	3
		P-channel VDS=VDD-0.5V VDD=4.8 V		1.43	2.39		mA	5
Delay time	td	CD=4.7nF	VDD=3V	6	13	20	ms	4



EC9509C/08C

Test circuit



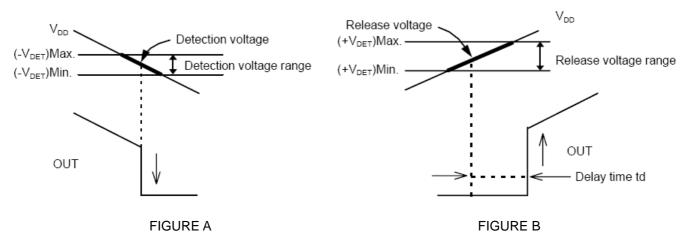


Timing chart

1. CMOS active low output

2. Nch open-drain active low output

Note : For values of VDD less than minimum operating voltage, values of OUT terminal output is free of the shaded region.

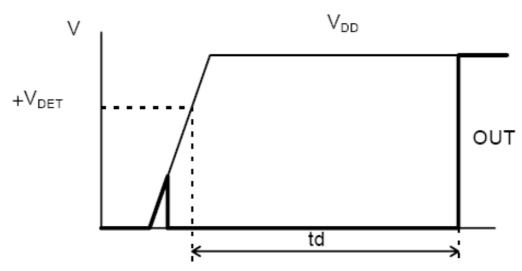

Definition of Technical Terms

1. Detection voltage (-VDET)

Detection voltage -VDET is a voltage at which the output turns to low. This detection voltage varies slightly among products of the same specification. The variation of detection voltage between the specified minimum [(-VDET) min.] and maximum [(-VDET) max.] is called the detection voltage range (See Figure A).

2. Release voltage (+VDET)

Release voltage +VDET is a voltage at which the output turns to high. This release voltage varies slightly among products of the same specification. The variation of release voltage between the specified minimum [(+VDET) min.] and maximum [(+VDET) max.] is called the release voltage range (See B).

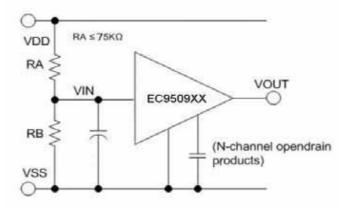


3. Hysteresis width (VHYS)

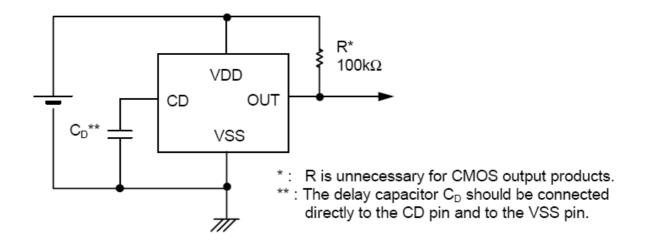
Hysteresis width is the voltage difference between the detection voltage and the release voltage. The existence of the hysteresis width avoids malfunction caused by noise on input signal.

4. Delay time (td)

Delay time is a time internally measured from the instant at which V_{DD} pin exceeds the release voltage (+ V_{DET}) to the point at which the output of the OUT pin inverts. The delay time changes according to the external capacitor C_{D} .


5. Short-circuit current

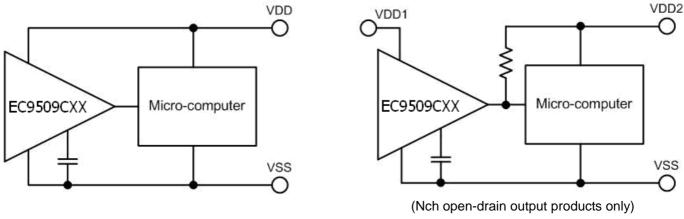
Short-circuit current refers to the current which flows instantaneously at the time of detection and release of a voltage detector. Short-circuit current is large in CMOS output products, and small in N channel open-drain output products.


6. Oscillation

In applications where a resistor is connected to the voltage detector input as shown in Figure , taking a CMOS active low product for example, the short-circuit current, which flows at release when the output goes from low to high, causes a voltage drop equal to [short-circuit current] × [input resistance] across the resistor. When the input voltage falls below the detection voltage -VDET as a result, the output voltage goes to low level. In this state, the short-circuit current stops and its resultant voltage drop disappears, and the output goes from low to high. Short-circuit current again starts flowing, a voltage drop appears, and oscillation is finally induced by repeating the process.

Following is an example for bad implementation: input voltage divider for a CMOS output product.

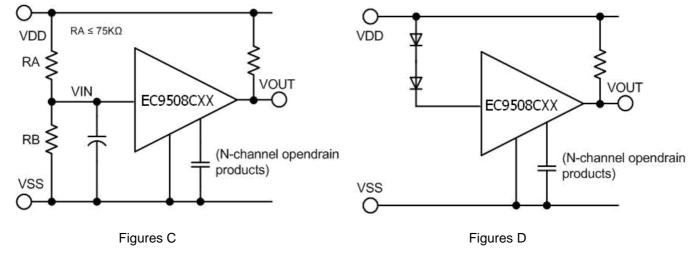
Standard Circuit

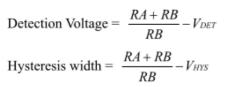


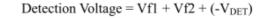
Application Circuit Examples

1. Microcomputer reset circuits

With the EC9509CXX Series which has a low operating voltage, a high-precision detection voltage and hysteresis characteristic, the reset circuits shown in Figures A to B can be easily constructed.




Figures A

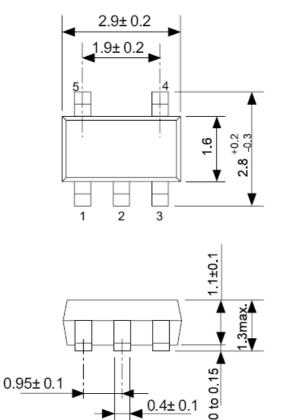

Figures B

2. Change of detection voltage

In Nch open-drain output products of the EC9508CXX Series, detection voltage can be changed using resistance dividers or diodes as shown in Figures C and D. Hysteresis width is also changed.

Note1: If RA and RB are large, the hysteresis width may also be larger than the value given by the equation above due to short-circuit current (which flows slightly in an N channel open-drain product).

Note2: RA should be 75k Ω or less to prevent oscillation.

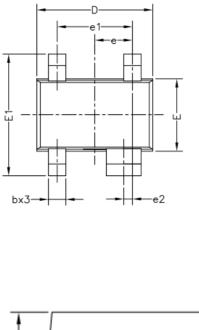


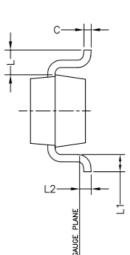
EC9509C/08C

PACKAGE TYPE : SOT23-5

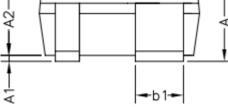
• Dimensions

Unit : mm




► 0.16 +0.1

No. MP005-A-P-SD-1.1



PACKAGE TYPE : SOT343

Symbol	Milim	eters	Inches		
Sym	MIN.	MAX.	MIN.	MAX.	
A	0.90	1.10	.036	.044	
A1	0.025	0.10	.001	.004	
A2	0.875	1.00	.035	.040	
b	0.20	0.40	.008	.016	
b1	0.40	0.60	.015	.024	
с	0.10	0.15	.004	.006	
D	1.90	2.10	.076	.084	
E	1.15	1.35	.046	.054	
E1	2.00	2.30	.080	.091	
е	0.65 BSC.		.026 BSC.		
e1	1.30 BSC.		.052 BSC.		
e2	0.15 BSC.		.006 BSC.		
L	0.425 REF.		.017 REF.		
L1	0.25	0.45	.010	.018	
L2	0.200	D REF.	.007	REF.	

Note:

 All dimensions are in millimeters, and the dimensions in inches are for reference only.
1mm=40mils=0.04inches