

RF6599

915MHz Transmit/Receive Module

This module is intended for 915MHz AMR solutions. It provides separate ports for Rx and Tx paths and two ports on the output for connecting a diversity solution or a test port. The PA section provides a nominal output power of 26dBm.

Functional Block Diagram

Ordering Information

RF6599	ISM Band Transmit/Receive Module with Diversity Antenna Switch
RF6599PCBK-410	Fully assembled evaluation board w/5 piece bag

Package: 28-pin, 5.5mm x 5.0mm

Features

- Tx Output Power: 26dBm
- Tx Gain: 14dB
- Rx Insertion Loss: 1dB
- Antenna Diversity Switch

Applications

- Wireless Automated Metering
- Wireless Alarm Systems
- Portable Battery Powered Equipment
- Smart Energy

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421 DS140130 For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com. RF MICRO DEVICES[®] and RFMD[®] are trademarks of RFMD, LLC. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks, and registered trademarks are the property of their respective owners. ©2013, RF Micro Devices, Inc.

Absolute Maximum Ratings

Parameter	Rating	Unit
Battery Voltage	5	V
RF Port Impedance	50	W
Operating Temperature	-30 to 70	°C
Storage Temperature	-40 to 85	°C
ESD, HBM (RF pins)	500	V
ESD, HBM (All pins)	500	V
ESD, CDN (RF pins)	500	V
ESD, CDM (all pins)	500	V
MSL	MSL 3	
Maximum Input Power to PA*	+20	dBm

*Maximum Input Power with a 50Ω Load

Nominal Operating Parameters

✓ rfmd 测

RFMD Green: RoHS status based on EU Directive 2011/65/EU (at time of this document revision), halogen free per IEC 61249-2-21, < 1000ppm each of antimony trioxide in polymeric materials and red phosphorus as a flame retardant, and <2% antimony in solder.

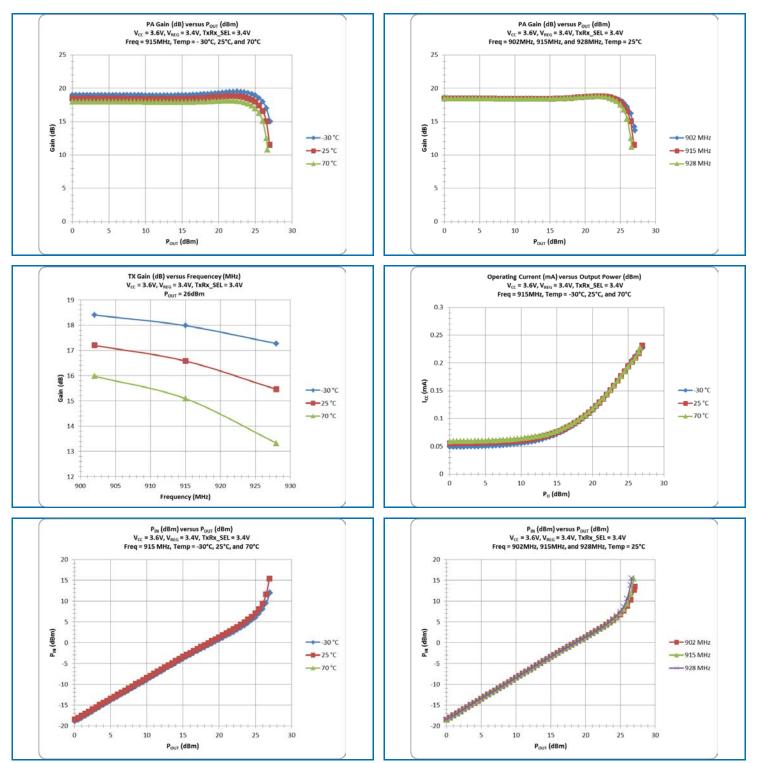
Caution! ESD sensitive device.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

Demonster	Specification				
Parameter Min Typ Max Unit		Condition			
Power Amplifier					V _{CC} = 3.6V, TXRX_SEL = High, ANT_SEL = High or Low, V _{REG} = High, Temperature = 25°C
Frequency Range	902	915	928	MHz	
CW Output Power	25.5	26		dBm	
Large Signal Gain, Min Supply	15.0	16.0		dB	V_{CC} = 3.3V, Temperature = -30°C
Voltage	13.0	15.5		dB	$V_{CC} = 3.3V$, Temperature = 25°C
	10.5	15.0		dB	$V_{CC} = 3.3V$, Temperature = 70°C
Large Signal Gain, Typ Supply	17.0	18.0		dB	$V_{CC} = 3.6V$, Temperature = -30°C
Voltage	16.5	17.0		dB	$V_{CC} = 3.6V$, Temperature = 25°C
	15.0	16.5		dB	$V_{CC} = 3.6V$, Temperature = 70°C
Large Signal Gain, Max Supply Voltage	18.5	19.0		dB	$V_{CC} = 4.0V$, Temperature = -30°C
	17.0	18.0		dB	$V_{CC} = 4.0V$, Temperature = 25°C
	16.0	17.0		dB	$V_{CC} = 4.0V$, Temperature = 70°C
Output Harmonic Levels					
2nd	-30			dBc	
3rd through 10th	-67			dBc	
Input Return Loss		10		dB	
Power Supply Voltage					
V _{CC}	3.3	3.6	4	V	
V _{REG}	3.1	3.4	3.8	V	$V_{REG} = V_{CC} - 0.2V$
Current					
Operating VCC		215	290	mA	$V_{CC} = 3.6V, P_{OUT} = 26dBm$
Operating VREG		3	4	mA	
Tx Idle Current		54	60	mA	V_{CC} = 3.6V, V_{REG} = 3.4V, ANT_SEL = TXRX_SEL = 3.4V at P_{OUT} = 0dBm
Module Leakage		0.2	0.5	mA	V_{CC} = 3.6V TXRX_SEL, ANT_SEL and V_{REG} = 0.0V

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421 For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com. DS140130

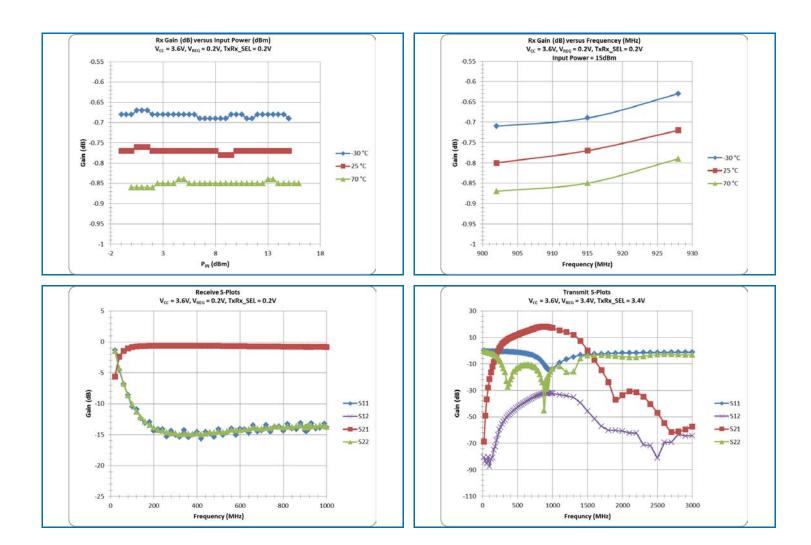
The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.


Deremeter	Specification			Unit		
Parameter	Min	Тур	Max	Unit	Condition	
Rx Path					V _{CC} = 3.6V, TXRX_SEL = Low, ANT_SEL = High or Low, V _{REG} = High	
Frequency Range	902	915	928	MHz		
Insertion Loss		1	1.3	dB		
Input IP3	12	18		dBm		
Input Return Loss	10			dB		
Output Return Loss	10			dB		
Current						
ANT1		80		mA	ANT_SEL = High, V _{REG} = Low, TXRX_Sel = Low	
Power Down Mode, ANT2		1.2		mA	ANT_SEL = Low, V _{REG} = Low, TXRX_Sel = Low	
Antenna Switch and Logic						
Isolation	20			dB	Any used port to any unused port	
Logic Voltage High	3.1	3.4	3.8	V	All Logic I/O's, VCC to 0.2V	
Logic Voltage Low	0	0.2		V	All Logic I/O's	
Logic Current, High		85	120	mA	All Logic I/O's	

Module Logic Truth Table

Operating Mode	ANT_SEL	TXRX_SEL
TX - ANT1	HIGH	HIGH
TX - ANT2	LOW	HIGH
RX - ANT1	HIGH	LOW
RX - ANT2	LOW	LOW

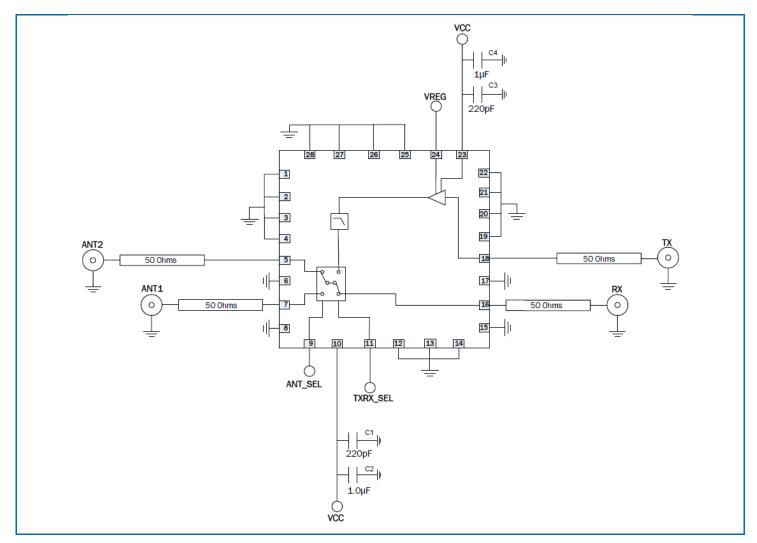
Typical Performance


RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421

DS140130

For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com. The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. "RFMD") for its use, nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

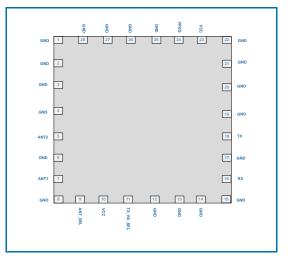
RF6599



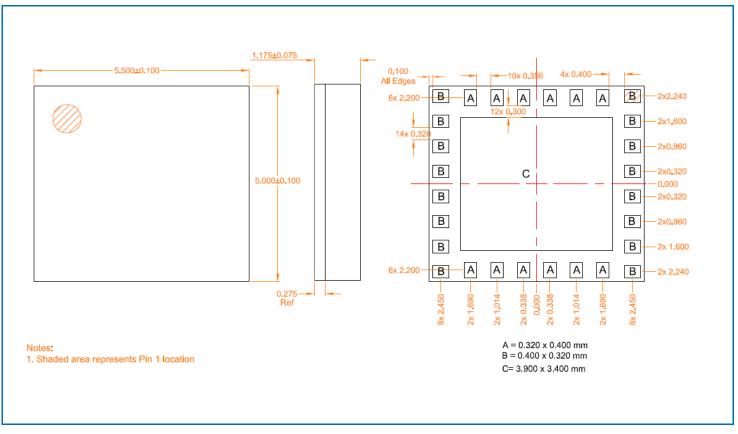
--

5 of 9

Evaluation Board Schematic 500MHz to 1000MHz Application Circuit



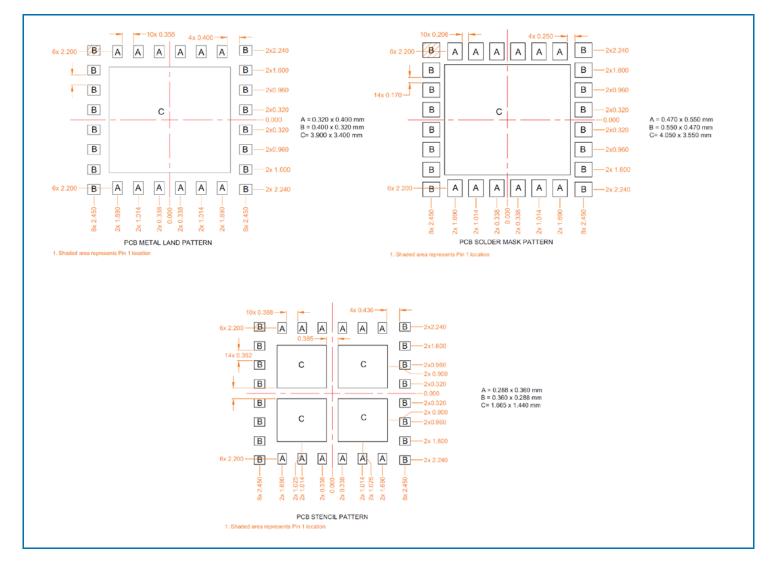
DS140130


The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Pin Out

Package Outline and Branding Drawing

All units in µm


RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421 For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com. DS140130

The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

RF6599

PCB Patterns

Pin Names and Descriptions

Pin	Name	Description				
1	GND	Ground				
2	GND	Ground				
3	GND	Ground				
4	GND	Ground				
5	ANT2	Antenna 2 Output/Input				
6	GND	Ground				
7	ANT1	Antenna 1 Output/Input				
8	GND	Ground				
9	ANT_SEL	Antenna Selection Control Line				
10	VCC	Diversity Switch Supply Voltage				
11	TXRX_SEL	Transmit or Receive Selection Control Lone				
12	GND	Ground				
13	GND	Ground				
14	GND	Ground				
15	GND	Ground				
16	RX	Receive Port				
17	GND	Ground				
18	ТХ	Transmit Port				
19	GND	Ground				
20	GND	Ground				
21	GND	Ground				
22	GND	Ground				
23	VCC	Power Amplifier Supply Voltage				
24	VREG	Power Amplifier Supply Voltage				
25	GND	Ground				
26	GND	Ground				
27	GND	Ground				
28	GND	Ground				
29	GND	Center Ground Flag				

The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices. Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.