

Voltage to Frequency Converter

AD537S

1.0 Scope

This specification documents the detail requirements for space qualified product manufactured on Analog Devices, Inc.'s QML certified line per MIL-PRF-38535 Level V except as modified herein.

The manufacturing flow described in the STANDARD SPACE LEVEL PRODUCTS PROGRAM brochure is to be considered a part of this specification. http://www.analog.com/aerospace

This data sheet specifically details the space grade version of this product. A more detailed operational description and a complete data sheet for commercial product grades can be found at www.analog.com/AD537

2.0 Part Number. The complete part number(s) of this specification follow:

<u>Part Number</u> <u>Description</u>

AD537-703D Voltage to Frequency Converter with 0 to 150kHz frequency range

3.0 Case Outline

 Letter
 Descriptive designator
 Case Outline (Lead Finish per MIL-PRF-38535)

 D
 CDIP2-T14
 14-Lead side-brazed ceramic dual-in-line package

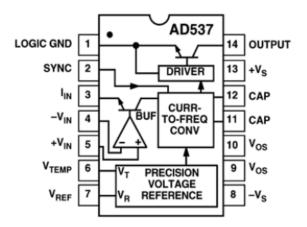


Figure 1 - Terminal Connections

Tel: 781.329.4700 www.analog.com Fax: 781.326.8703 © 2010 Analog Devices, Inc. All rights reserved.

AD537S

4.0 Absolute Maximum Ratings. (T_A = 25°C, unless otherwise noted)

Voltage, Rated Performance Single Supply	4.5 to 36V
Voltage, Rated Performance Dual Supply	
Operating Temperature Range	
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10 sec.)	+300°C
Maximum Junction Temperature (T _J)	

NOTES:

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

5.0 Thermal Characteristics:

	Junction-to-Case	Junction-to-Ambient	
Package Type	$(\Theta_{\sf JC})$	$(\Theta_{ m JA})$	Units
Thermal Resistance, 14 DIP (X)	25	95	°C/W Max

6.0 Table I. Electrical Table:

Table I						
<u>Parameter</u>	Symbol	<u>Conditions</u>	Sub-	<u>Limit</u>	<u>Limit</u>	<u>Units</u>
See notes at end of table		Note 1/	group	<u>Min</u>	<u>Max</u>	
Frequency Range	Fo		1	0	150	KHz
Linearity Error (Nonlinearity)	LE	$F_o = 10Khz$	1		0.07	%
, , , , , , , , , , , , , , , , , , , ,		$F_o = 100Khz$	4		0.1	
Gain Error (Full-Scale Calibration Error)	A _E	C=0.01uF, lin=1.00mA	1	-5	5	%
Gain vs. Supply	ΔA _E /ΔVs	$F_o = 10Khz, 15V < Vs < 20V$	1		0.1	%/V
Gain Drift	$\Delta A_E / \Delta T$	+25 °C to +125 °C	2	-250	250	ppm/°C
Gain Britt	Δ/ (Ε /Δ Ι	+25 °C to -55 °C	3	-250	250	ррпи О
Voltage Input Range	VIR	Vs Single Supply	1	0	+Vs-4	V
- Tomage input italige	- 110	Vs Dual Supply	1	-Vs	+Vs-4	·
Input Bias Current	I _{IB}		1	-100	+100	nA
Input Resistance 4/	R _I			250		Mohms
Input Offset Voltage 2/	Vos		1		2	mV
Offset vs. Supply	ΔV _{os} /ΔVs	15V <vs<20v< td=""><td>1</td><td></td><td>100</td><td>uV/V</td></vs<20v<>	1		100	uV/V
Offset Drift	ΔV _{os} /ΔT	+25 °C to +125 °C	2	-10	10	uV/°C
Olisot Dilit	Δν ₀₈ /Δι	+25 °C to -55 °C	3	-10	10	uv/ O
Voltage Ref Absolute Value 3/	V_{REF}		1	-5	5	%
V _{REF} vs. Temp	$\Delta V_{REF}/\Delta T$	+25 °C to +125 °C	2	-100	100	ppm/°C
VREF VS. TOMP		+25 °C to -55 °C	3	-100	100	ррпі, О
V _{REF} vs. Supply	ΔV_{REF} / ΔVs	15V <vs<35v< td=""><td>1</td><td></td><td>0.03</td><td>%/V</td></vs<35v<>	1		0.03	%/V
Initial Calibration - Absolute	V _{Temp}		1	278	318	mV
Temperature Reference	v remp		'	270	010	111 V
Output Voltage Logic Low	V_{OL}	$I_{SINK} = 10mA$	1,2,3		0.4	V
Output Leakage Current	I _{OH}	Logic 1	1,2,3		2	uA
Quiescent Current	Is	Vs = 5V & 36V	1,2,3		2.5	mA

TABLE I NOTES:
1/ $T_A = +25$ °C, T_A Max = +125 °C, T_A Min = -55 °C. $V_S = +15V$, C = 0.01uF unless otherwise noted 2/ Trimmable for 14 pin DIP package only.
3/ Nominal value 1.00V.

Guaranteed by design

7.0 Table II. Electrical Test Requirements:

Table II		
Test Requirements	Subgroups (in accordance with MIL-PRF-38535, Table III)	
Interim Electrical Parameters	1	
Final Electrical Parameters	1, 2, 3, 4 <u>1</u> / <u>2</u> /	
Group A Test Requirements	1, 2, 3, 4	
Group C end-point electrical parameters	1 <u>2</u> /	
Group D end-point electrical parameters	1	
Group E end-point electrical parameters	N/A	

Notes

- 1/ PDA applies to Subgroup 1. Delta's excluded from PDA.
- 2/ See Table III for Delta limits. See Table I for test conditions.

8.0 Table III. Life Test / Burn-in Delta limits:

Table III		
Test Symbol	<u>Delta Limit</u>	<u>Units</u>
I _S	±0.3	mA
V_{os}	±1	mV

9.0 Life Test / Burn-In Circuit:

- **9.1** HTRB is not applicable for this drawing.
- 9.2 Burn-in is per MIL-STD-883 Method 1015, test condition B.
- 9.3 Steady state life test is per MIL-STD-883 Method 1005, test condition B.

10.0 MIL-STD-38535 QMLV exceptions:

10.1 Full WLA per MIL-STD-883 TM 5007 is not available for this product. SEM Inspection only is available per MIL-STD-883, TM2018.

Rev	Description of Change	Date
Α	Initiate	July 17, 2007
В	Update header/footer and add to 1.0 Scope description.	March 6, 2008
С	Add Junction Temperature (T _J)+150°C to Absolute Max. Ratings	April 2, 2008
D	Remove post Group C specification limits in Table III such that only Delta limits are listed. Correct Case Outline Letter and descriptive designator. Formatting improvements.	March 25, 2010