N-Channel Power MOSFET 400 V, 5.5 Ω #### **Features** - 100% Avalanche Tested - These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant ## ABSOLUTE MAXIMUM RATINGS (T_J = 25°C unless otherwise noted) | Parameter | Symbol | NDD | NDT | Unit | |---|-----------------------------------|--------|------|------| | Drain-to-Source Voltage | V _{DSS} | 400 | | V | | Gate-to-Source Voltage | V _{GS} | ±2 | 20 | V | | Continuous Drain Current $R_{\theta JC}$
Steady State, $T_C = 25^{\circ}C$ (Note 1) | I _D | 1.7 | 0.4 | Α | | Continuous Drain Current R _{θ,JC}
Steady State, T _C = 100°C (Note 1) | I _D | 1.1 | 0.25 | Α | | | P _D | 39 | 2.0 | W | | Pulsed Drain Current | I _{DM} | 6.9 | 1.6 | Α | | Continuous Source Current (Body Diode) | IS | 1.7 | 0.4 | Α | | Single Pulse Drain-to-Source
Avalanche Energy, I _D = 1 A | | | 20 | mJ | | Maximum Temperature for Soldering T _L Leads | | 26 | 60 | °C | | Operating Junction and Storage
Temperature | T _J , T _{STG} | –55 to | +150 | °C | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. - 1. Limited by maximum junction temperature - 2. $I_S = 1.7 \text{ A}$, $di/dt \le 100 \text{ A/}\mu\text{s}$, $V_{DD} \le BV_{DSS}$, $T_J = +150^{\circ}\text{C}$ #### THERMAL RESISTANCE | Parameter | Symbol | Value | Unit | | |--------------------------|---|----------------|-----------------------|------| | Junction-to-Case (Drain) | NDD02N40 | $R_{ heta JC}$ | 3.2 | °C/W | | NDD02I
NDT0 | ate
02N40 (Note 4)
N40-1 (Note 3)
02N40 (Note 4)
02N40 (Note 5) | $R_{ hetaJA}$ | 39
96
62
151 | °C/W | - 3. Insertion mounted - 4. Surface mounted on FR4 board using 1" sq. pad size - (Cu area = 1.127" sq. [2 oz] including traces) 5. Surface–mounted on FR4 board using minimum recommended pad size (Cu area = 0.026" sq. [2 oz]). ## ON Semiconductor® #### http://onsemi.com | V _{(BR)DSS} | R _{DS(ON)} MAX | |----------------------|-------------------------| | 400 V | 5.5 Ω @ 10 V | #### **N-Channel MOSFET** #### **MARKING DIAGRAMS** Drain **IPAK** CASE 369D (Straight Lead) STYLE 2 = Year WW 2N40 = Work Week = Device Code = Pb-Free Package Gate Drain Source Drain 2 G SOT-223 **CASE 318E** STYLE 3 = Assembly Location = Year = Work Week W 2N40 = Specific Device Code = Pb-Free Package (*Note: Microdot may be in either location) ### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet. ## **ELECTRICAL CHARACTERISTICS** ($T_J = 25^{\circ}C$ unless otherwise noted) | Characteristic | Symbol | Test Conditions | | Min | Тур | Max | Unit | |--|--------------------------------------|---|------------------------|-----|-----|-----|-------| | OFF CHARACTERISTICS | | | | | • | | • | | Drain-to-Source Breakdown Voltage | V _{(BR)DSS} | V _{GS} = 0 V, I _D = 1 r | nA | 400 | | | V | | Drain-to-Source Breakdown Voltage
Temperature Coefficient | V _{(BR)DSS} /T _J | Reference to 25°0
I _D = 1 mA | C, | | 460 | | mV/°C | | Drain-to-Source Leakage Current | I _{DSS} | V _{DS} = 400 V, V _{GS} = 0 V | T _J = 25°C | | | 1 | μΑ | | | | | T _J = 125°C | | | 50 | 1 | | Gate-to-Source Leakage Current | I _{GSS} | V _{GS} = ±20 V | • | | | ±10 | μА | | ON CHARACTERISTICS (Note 6) | | | | | | | | | Gate Threshold Voltage | V _{GS(TH)} | $V_{DS} = V_{GS}, I_D = 250$ |) μΑ | 0.8 | 1.6 | 2 | V | | Negative Threshold Temperature Coefficient | V _{GS(TH)} /T _J | Reference to 25°C, I _D = | = 50 μΑ | | 4.6 | | mV/°C | | Static Drain-to-Source On Resistance | R _{DS(on)} | $V_{GS} = 10 \text{ V}, I_D = 0.2$ | 22 A | | 4.5 | 5.5 | Ω | | Forward Transconductance | 9FS | $V_{DS} = 15 \text{ V}, I_D = 0.2$ | 22 A | | 1.1 | | S | | DYNAMIC CHARACTERISTICS | | | | | | | | | Input Capacitance (Note 7) | C _{iss} | | | | 121 | | pF | | Output Capacitance (Note 7) | C _{oss} | Vpo = 25 V Voo = 0 V f | _ 1 MHz | | 16 | | 1 | | Reverse Transfer Capacitance (Note 7) | C _{rss} | $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$ | | | 3 | | 1 | | Total Gate Charge (Note 7) | Qg | | | | 5.5 | | nC | | Gate-to-Source Charge (Note 7) | Q _{gs} | | | | 0.8 | | 1 | | Gate-to-Drain ("Miller") Charge (Note 7) | Q _{gd} | $V_{DS} = 200 \text{ V}, I_D = 1.7 \text{ A}, V_D$ | ′ _{GS} = 10 V | | 1.0 | | 1 | | Plateau Voltage | V _{GP} | | İ | | 3.1 | | V | | Gate Resistance | R_{g} | | | | 8.7 | | Ω | | RESISTIVE SWITCHING CHARACTER | ISTICS (Note 8 |) | • | | • | | - | | Turn-on Delay Time | t _{d(on)} | | | | 5 | | ns | | Rise Time | t _r | V _{DD} = 200 V, I _D = 1. | .7 A, | | 7 | | 1 | | Turn-off Delay Time | t _{d(off)} | $V_{DD} = 200 \text{ V}, I_D = 1.$
$V_{GS} = 10 \text{ V}, R_G = 0.$ | Ω | | 14 | | 1 | | Fall Time | t _f | | | | 4 | | | | SOURCE-DRAIN DIODE CHARACTEF | RISTICS | | | | • | | - | | Diode Forward Voltage | V_{SD} | $I_S = 1.7 \text{ A}, V_{GS} = 0 \text{ V}$ $T_J = 25^{\circ}\text{C}$ $T_J = 100^{\circ}\text{C}$ | | | 0.9 | 1.6 | V | | | | | | | 0.8 | | 1 | | Reverse Recovery Time | t _{rr} | $V_{GS} = 0 \text{ V}, V_{DD} = 30 \text{ V}, I_{S} = 1.7 \text{ A},$ $d_i/d_t = 100 \text{ A}/\mu\text{s}$ | | | 146 | | ns | | Charge Time | ta | | | | 37 | | 1 | | Discharge Time | t _b | | | | 109 | | 1 | | Reverse Recovery Charge | Q _{rr} | | | | 260 | | nC | - Pulse Width ≤ 380 μs, Duty Cycle ≤ 2%. Guaranteed by design. Switching characteristics are independent of operating junction temperatures. ### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |-------------|------------------------------------|-----------------------| | NDD02N40-1G | IPAK
(Pb–Free, Halogen Free) | 75 Units / Rail | | NDD02N40T4G | DPAK
(Pb-Free, Halogen Free) | 2500 / Tape & Reel | | NDT02N40T1G | SOT-223
(Pb-Free, Halogen Free) | 1000 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. #### **TYPICAL CHARACTERISTICS** Figure 1. On-Region Characteristics Figure 2. Transfer Characteristics Figure 3. On–Resistance vs. Gate–to–Source Voltage Figure 4. On-Resistance vs. Drain Current and Gate Voltage Figure 5. On–Resistance Variation with Temperature Figure 6. Normalized BVDSS with Temperature #### TYPICAL CHARACTERISTICS Figure 7. Drain-to-Source Leakage Current vs. Voltage Figure 8. Capacitance Variation $V_{GS} = 0 V$ $T_J = 25^{\circ}C$ f = 1 MHz 100 100 Figure 9. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge 100 IS, SOURCE CURRENT (A) 10 $T_J = 150^{\circ}C$ -55°C = 25°C $T_J = 125^{\circ}C$ 0.1 1.2 1.3 0.8 0.9 1.0 1.1 V_{SD}, SOURCE-TO-DRAIN VOLTAGE (V) Figure 11. Diode Forward Voltage vs. Current Figure 10. Resistive Switching Time Variation vs. Gate Resistance #### TYPICAL CHARACTERISTICS Figure 13. Maximum Rated Forward Biased Safe Operating Area for NDT02N40 Figure 14. Thermal Impedance (Junction-to-Case) for NDD02N40 Figure 15. Thermal Impedance (Junction-to-Ambient) for NDT02N40 ## **PACKAGE DIMENSIONS** **SOT-223 (TO-261)** CASE 318E-04 ISSUE N - NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCH. | | MILLIMETERS INC | | | INCHES | | | |-----|-----------------|------|------|--------|-------|-------| | DIM | MIN | NOM | MAX | MIN | NOM | MAX | | Α | 1.50 | 1.63 | 1.75 | 0.060 | 0.064 | 0.068 | | A1 | 0.02 | 0.06 | 0.10 | 0.001 | 0.002 | 0.004 | | b | 0.60 | 0.75 | 0.89 | 0.024 | 0.030 | 0.035 | | b1 | 2.90 | 3.06 | 3.20 | 0.115 | 0.121 | 0.126 | | С | 0.24 | 0.29 | 0.35 | 0.009 | 0.012 | 0.014 | | D | 6.30 | 6.50 | 6.70 | 0.249 | 0.256 | 0.263 | | E | 3.30 | 3.50 | 3.70 | 0.130 | 0.138 | 0.145 | | е | 2.20 | 2.30 | 2.40 | 0.087 | 0.091 | 0.094 | | e1 | 0.85 | 0.94 | 1.05 | 0.033 | 0.037 | 0.041 | | L | 0.20 | | - | 0.008 | | _ | | L1 | 1.50 | 1.75 | 2.00 | 0.060 | 0.069 | 0.078 | | HE | 6.70 | 7.00 | 7.30 | 0.264 | 0.276 | 0.287 | | θ | 0° | - | 10° | 0° | - | 10° | STYLE 3: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN ### **SOLDERING FOOTPRINT** #### PACKAGE DIMENSIONS #### **DPAK (SINGLE GAUGE)** CASE 369C ISSUE D ### **SOLDERING FOOTPRINT*** *For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. - NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME - Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCHES. 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-MENSIONS b3, L3 and Z. - MENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE. - 5. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY. - 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H. | | INCHES | | MILLIMETER | | | |-----|-----------|-------|------------|-------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 0.086 | 0.094 | 2.18 | 2.38 | | | A1 | 0.000 | 0.005 | 0.00 | 0.13 | | | b | 0.025 | 0.035 | 0.63 | 0.89 | | | b2 | 0.030 | 0.045 | 0.76 | 1.14 | | | b3 | 0.180 | 0.215 | 4.57 | 5.46 | | | С | 0.018 | 0.024 | 0.46 | 0.61 | | | c2 | 0.018 | 0.024 | 0.46 | 0.61 | | | D | 0.235 | 0.245 | 5.97 | 6.22 | | | Е | 0.250 | 0.265 | 6.35 | 6.73 | | | е | 0.090 BSC | | 2.29 | BSC | | | Н | 0.370 | 0.410 | 9.40 | 10.41 | | | L | 0.055 | 0.070 | 1.40 | 1.78 | | | L1 | 0.108 | REF | 2.74 REF | | | | L2 | 0.020 | BSC | 0.51 | BSC | | | L3 | 0.035 | 0.050 | 0.89 | 1.27 | | | L4 | | 0.040 | | 1.01 | | | Z | 0.155 | | 3.93 | | | - STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN #### PACKAGE DIMENSIONS #### **IPAK** CASE 369D ISSUE C #### NOTES - DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. - CONTROLLING DIMENSION: INCH. | | INCHES | | MILLIM | ETERS | |-----|-----------|-------|----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.235 | 0.245 | 5.97 | 6.35 | | В | 0.250 | 0.265 | 6.35 | 6.73 | | С | 0.086 | 0.094 | 2.19 | 2.38 | | D | 0.027 | 0.035 | 0.69 | 0.88 | | Е | 0.018 | 0.023 | 0.46 | 0.58 | | F | 0.037 | 0.045 | 0.94 | 1.14 | | G | 0.090 BSC | | 2.29 BSC | | | Н | 0.034 | 0.040 | 0.87 | 1.01 | | J | 0.018 | 0.023 | 0.46 | 0.58 | | K | 0.350 | 0.380 | 8.89 | 9.65 | | R | 0.180 | 0.215 | 4.45 | 5.45 | | S | 0.025 | 0.040 | 0.63 | 1.01 | | ٧ | 0.035 | 0.050 | 0.89 | 1.27 | | Z | 0.155 | | 3.93 | | STYLE 2: PIN 1. GATE 2. DRAIN - 3. SOURCE - DRAIN ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implications the polar or their applications with the applications which the failure of the SCILLC product could regard a situation where surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com Phone: 81-3-5817-1050 N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative