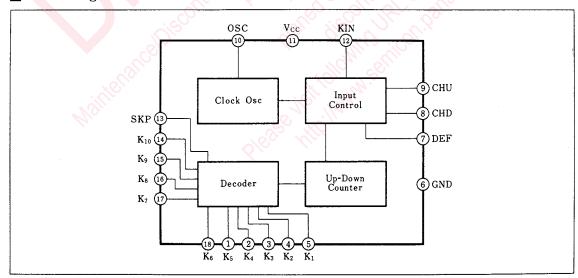
AN5011

TV Electronic Channel Selection Circuit

Outline


The AN5011 is an integrated circuit designed for electronic tuner circuit by the preset volume method.

Features

- Simplifies selection circuit up to 10 channels
- Incorporating clock oscillator, input control, UP DOWN counter and decoder circuits
- Remote control system available (UP DOWN bidirectional)
- Clock frequency changeable by external components
- Provided with pulse output
- Channel initialize when power is switched on can be set at any channel
- Selection output breakdown voltage: 40V
- Selection output saturation voltage :< 0.15V (5mA)
- Supply voltage: 6.0V
- Channel selection : 10 channels, jump over selection available

Unit: mm 5 ± 0.1 \supset 18 <u>□</u>>17 $2 \propto$ ο. 3€ □>16 ლ 4**⊄** 1214₹ 6<T \supset 13 $\supset 12$ **□**11 8<□ →10 1.1 ± 0.25 6.2±0.3 4.7 ± 0.25 3.05 ± 0.25 $0.3^{+0.2}_{-0.05}$ 7.62 ± 0.25 18-Lead DIL Plastic Package

Block Diagram

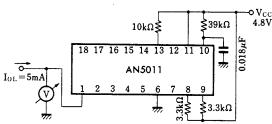
■ Absolute Maximum Ratings (Ta=25°C)

Item		Symbol	Rating		Unit	
	Supply Voltage	V _{cc}	7.2		V	
Voltage		V _{K-6} *1	-0.5	50	V	
	Circuit Voltage	V ₇₋₈	-0.5 14.4		V	
	Circuit Voltage	V ₁₁₋₆	-0.5	7.2	V	
		V ₁₀₋₆	-0.5	7.2	V	
Current	Supply Current	I _{tot} 60		0	mA	
		I _K *2	-5		mA	
		I_7	-5	15	mA	
		I_8	-5	10	mA	
	Circuit Current	Ig	-5	10	mA	
	,	I ₁₀	-5	10	mA	
		I_{11}	-5	60	mA	
ř		I ₁₂	-5	10	mA	
		I_{13}	-5	10	mA	
Power Dissipation (Ta=75℃)		P _D	450		mW	
Temperature	Operating Ambient Temperature	Topr	-20~+75		$^{\circ}$	
	Storage Temperature	T_{stg}	-40~+150		℃	

^{*1:} K of Vk indicates pins 1 to 5 and 4 to 17.

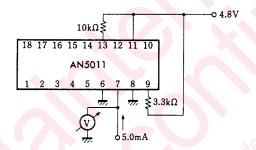
Electrical Characteristics (V_∞=V₅₋₃=12V, Ta=25°C)

Item	Symbol	Test Circuit	Condition	min.	typ.	max.	Unit
Output Voltage Low Level (Tuning)	V _{OL(K)}	1	V _{cc} =4.8V, I _{oL} =5mA	10	٠,	0.15	V
Output Current High Level (Tuning)	I _{OH(K)}	2	$V_{cc} = 7.2 V, V_{OH} = 35 V$	-0		5	μΑ
Output Voltage Low Level (DEF)	V _{oL(D)}	3	V _{cc} =4.8V, I _{oL} =5mA	2		5	v
Output Current High Level (DEF)	I _{OH(D)}	4	$V_{cc} = 7.2V, V_{OH} = 14.4V$			5	μΑ
Input Current Low Level (CHD)	I _{IL(CHD)}	5	V _{cc} =7.2V, V _{IL} =0V	- 5			μΑ
Input Current Low Level (CHU)	I _{IL(CHU)}	7	$V_{cc}=7.2V$, $V_{IL}=0V$	- 5			μΑ
Input Current High Level (CHD)	I _{IH(CHD)} *1	6	V _{cc} =4.8V	50			μΑ
Input Current High Level (CHU)	I _{IH(CHU)} *1	8	V _{cc} =4.8V	50			μΑ
Input Current Low Level (KIN)	I _{IL(KI)}	9	$V_{cc}=7.2V$, $V_{IL}=0V$	-10			μΑ
Input Current High Level (KIN)	I _{IH(KI)} *2	10	V _{cc} =4.8V	200		**********	μΑ
Input Current Low Level (SKP)	I _{IL(SK)}	11	$V_{cc} = 7.2V, V_{IL} = 0V$	- 5			μΑ
Input Current High Level (SKP)	I _{IH(SK)} *1	12	V _{cc} =4.8V	50			μΑ
Input Current Low Level (OSC)	I _{IL(OS)}	13	V _{cc} =7.2V, V _{IL} =1.0V			5	μΑ
Input Current High Level (OSC)	I _{IH(OS)}	14	$V_{cc}=4.8V$, $V_{IH}=4V$	1.7		3.2	m A
Oscillation Frequency (Clock)	fosc	15	V _{cc} =6V	1.5	2.0	2.5	kHz
Total Circuit Current	I _{tot}	16	V _{cc} =6V	23	35	50	m A

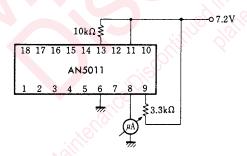

^{*1:} DEF Pin (⑦) shall be "H" level (3.0V or more).

Note: Operating supply voltage is: V_{cc} (opr) = 4.8 \sim 7.2V.

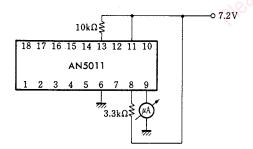
^{* 2 :} K of Ik indicates pins ① to ⑤ and ④ to ⑰ and ratings when output is LOW level.

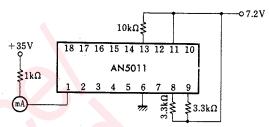

^{*2:}DEF Pin (⑦) shall be "L" level (1.0V or less).

Test Circuit 1 (V_{OL(K)})

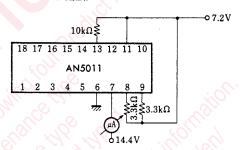


Note: Pins ① to ⑤ and ④ to ① are used for measuring pins. Pirst, short-circuit pins ② (KIN) and ⑤ (KI) to set the measuring pin to ⑤. Then, make CHU and CHD pins "L" level to set K1 to K16 sequentially. Pins other than measuring pins are not required for connection.

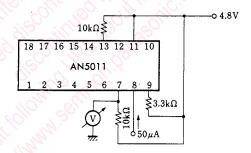

Test Circuit 3 (VOL(D))


Test Circuit 5 (IIL(CHD))

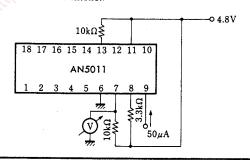
Test Circuit 7 (IIL(CHU))

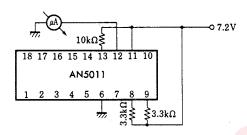


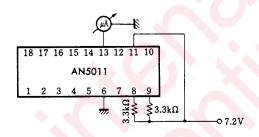
Test Circuit 2 (IOH(K))

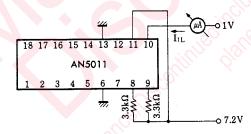


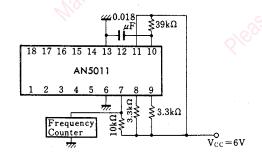
Note: Pins ① to ⑤ and ④ to ⑥ are used for measuring pins. Pins other than measuring pins are not required for connection.

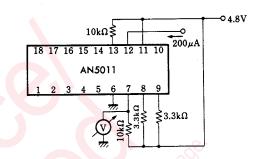

Test Circuit 4 (I_{OH(D)})

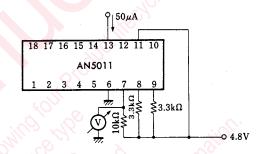

Test Circuit 6 (IIH(CHD))

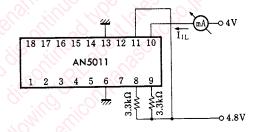

Test Circuit 8 (IIH(CHID)

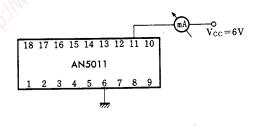

Test Circuit 9 (I_{IL(KI)})

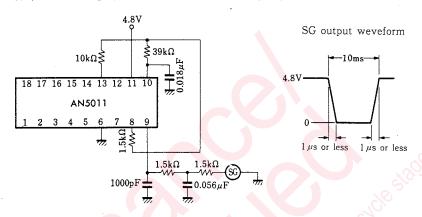

Test Circuit 11 (IIL(SK))

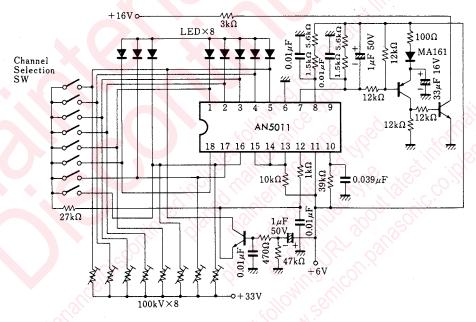

Test Circuit 13 (IIL(OS))


Test Circuit 15 (fosc)


Test Circuit 10 (I_{IH(KI)})


Test Circuit 12 (IIH(SK))


Test Circuit 14 (IIH(OS))


Test Circuit 16 (Itot)

Test Circuit 17 (sequential tuning operation by CHU and CHD inputs)

Application Circuit

Pin

Pin No.	Pin Name	Pin No.	Pin Name
1	Ch.Selection Output(5)	10	VOsc. Filter
2	Ch.Selection Output(4)	11	Vcc
3	Ch.Selection Output(3)	12	Key Input
4	Ch.Selection Output(2)	13	Skip Input
5	Ch.Selection Output(1)	14	Ch.Selection Output(10)
6	GND	15	Ch.Selection Output(9)
7	AFT Defeat Input	16	Ch.Selection Output(8)
8	Ch.Down Input	17	Ch.Selection Output(7)
9	Ch.Up Input	18	Ch.Selection Output(6)

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products. No license is granted in and to any intellectual property right or other right owned by Panasonic Corporation or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
- (3) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
 - Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - · Any applications other than the standard applications intended.
- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.
- Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
- (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
- (7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of our company.

20080805