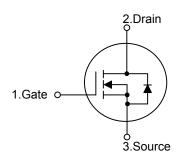


UNISONIC TECHNOLOGIES CO., LTD

UT12N10 Preliminary Power MOSFET

12 Amps, 100 Volts N-CHANNEL POWER MOSFET

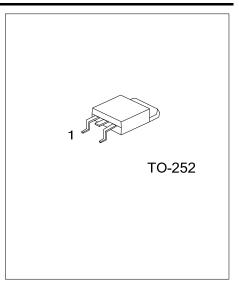

■ DESCRIPTION

The UTC **UT12N10** is an N-channel mode Power FET using UTC's advanced technology to provide custumers with minimum on-state resistance by extremely high dense cell design. Moreover, it's good at handing high power and current.

■ FEATURES

- * 100V, 12A, $R_{DS(ON)} = 180 \text{m}\Omega$ @ $V_{GS} = 10V$.
- * Be good at handing high power and current.
- * Very high dense cell design for super low R_{DS(ON)}.
- * Lead free product is acquired.





■ ORDERING INFORMATION

Ordering Number		Dookogo	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UT12N10L-TN3-R	UT12N10G-TN3-R	TO-252	G	D	S	Tape Reel	

Note: Pin Assignment: G: Gate D: Drain S: Source

<u>www.unisonic.com.tw</u> 1 of 4

■ ABSOLUTE MAXIMUM RATINGS (T_C=25°C, unless otherwise noted)

PARAM	PARAMETER SYMBOL RATINGS		UNIT	
Drain-Source Voltage		V_{DSS}	100	V
Gate-Source Voltage		V_{GSS}	V _{GSS} ±20	
Dania Orana at	Continuous	I _D	12	Α
Drain Current	Current Pulsed (Note 1) I _{DM} 44	Α		
Power Dissipation		P _D	43	W/°C
Junction Temperature		T_J	+150	°C
Storage Temperature		T _{STG}	-55~+150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

Note:1 Repetitive Rating: Pulse width limited by maximum junction temperature

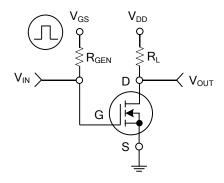
■ THERMAL CHARACTERISTICS

PARAMETER	SYMBOL	RATINGS	UNIT	
Junction to Ambient (Note 2)	$ heta_{JA}$	50	°C/W	
Junction to Case	θ_{JC}	3.5	°C/W	

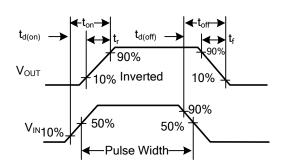
Note: θ_{JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins.

 θ_{JC} is guaranteed by design while θ_{JA} is determined by the user's board design.

Note: 2 When mounted on a 1 in 2 pad of 2 oz copper


■ **ELECTRICAL CHARACTERISTICS** (T_C=25°C, unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS		TYP	MAX	UNIT
OFF CHARACTERISTICS						
Drain-Source Breakdown Voltage	BV _{DSS}	I _D =250μA, V _{GS} =0V				V
Drain-Source Leakage Current	I _{DSS}	V _{DS} =100V, V _{GS} =0V			1	μΑ
Gate- Source Leakage Current Forward]	V _{GS} =+20V, V _{DS} =0V			+100	nA
Reverse	I_{GSS}	V _{GS} =-20V, V _{DS} =0V			-100	nA
ON CHARACTERISTICS (Note 1)						
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_D=250\mu A$			4	V
Static Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =6A		150	180	mΩ
Forward Transconductance	g fs	V_{DS} =10V, I_{D} =6A		5		S
DYNAMIC PARAMETERS (Note 2)						
Input Capacitance	C _{ISS}	V _{GS} =0V, V _{DS} =25V, f=1.0MHz		430		pF
Output Capacitance	Coss			90		pF
Reverse Transfer Capacitance	C_{RSS}			20		pF
SWITCHING PARAMETERS (Note 2)						
Total Gate Charge	Q_G	V _{GS} =10V, V _{DS} =80V, I _D =12A		8	16	nC
Gate to Source Charge	Q_GS			1.5		nC
Gate to Drain Charge	Q_GD			2		nC
Turn-ON Delay Time	t _{D(ON)}			12	24	ns
Rise Time	t _R	V_{DD} =80V, I_{D} =12A, V_{GS} =10V, R_{G} =9.1 Ω		7	14	ns
Turn-OFF Delay Time	t _{D(OFF)}			18	35	ns
Fall-Time	t _F			3	6	ns
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS						
Maximum Body-Diode Continuous Current	Is				12	Α
Drain-Source Diode Forward Voltage	V_{SD}	1 -124 \/ -0\/			1.2	V
(Note 1)		I _S =12A, V _{GS} =0V			1.2	V


Note: 1. Pulse Test: Pulse width \leq 300 μ s, Duty cycle \leq 2%

^{2.} Guaranteed by design, not subject to production testing.

■ TEST CIRCUITS AND WAVEFORMS

Switching Test Circuit

Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.