

NTGD4161P

Power MOSFET

-30 V, -2.3 A, Dual P-Channel, TSOP-6

Features

- Fast Switching Speed
- Low Gate Charge
- Low R_{DS(on)}
- Independently Connected Devices to Provide Design Flexibility
- This is a Pb–Free Device

Applications

- Load Switch
- Battery Protection
- Portable Devices Like PDAs, Cellular Phones and Hard Drives

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	-30	V
Gate-to-Source Voltage			V _{GS}	±20	V
Continuous Drain	Steady State	T _A = 25°C	۱ _D	-2.1	Α
Current (Note 1)		$T_A = 85^{\circ}C$		-1.5	
	t ≤ 5 s	$T_A = 25^{\circ}C$		-2.3	
Power Dissipation (Note 1)	Steady State	T _A = 25°C	P _D	1.1	W
	t ≤ 5 s			1.3	1
Continuous Drain	Steady	T _A = 25°C	I _D	-1.5	Α
Current (Note 2)	State	T _A = 85°C		-1.1	1
Power Dissipation (Note 2)		$T_A = 25^{\circ}C$	PD	0.6	W
Pulsed Drain Current	t _p =	= 10 μs	I _{DM}	-10	Α
Operating Junction and Storage Temperature			T _J , T _{STG}	-55 to 150	°C
Source Current (Body Diode)			۱ _S	-0.8	Α
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			ΤL	260	°C

MAXIMUM RATINGS (T₁ = 25°C unless otherwise noted)

Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 1)	R_{\thetaJA}	115	°C/W
Junction-to-Ambient - Steady State (Note 2)		225	
Junction-to-Ambient – t \leq 5 s (Note 1)		95	
Junction-to-Case - Steady State (Note 1)	R_{\thetaJC}	40	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. When surface mounted to an FR4 board using 1 in. pad size

(Cu. area = 1.2 in² [1 oz] including traces)

2. When surface mounted to an FR4 board using minimum recommended pad size (Cu. area = 0.047 in^2)

V _{(BR)DSS}	R _{DS(on)} Max			
–30 V	160 mΩ @ –10 V			
	280 mΩ @ –4.5 V			

S8	= Specific Device Code
М	= Date Code*
•	= Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]			
NTGD4161PT1G	TSOP-6 (Pb-Free)	3000 / Tape & Reel			

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Product specification

NTGD4161P

ELECTRICAL CHARACTERISTICS (T_{.J}=25°C unless otherwise stated)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS	•						
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, \text{ I}_{D} = -250 \mu\text{A}$		-30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				22		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{CS} = 0 V_{CS}$	T _J = 25°C			-1.0	μΑ
		$V_{DS} = -24 V$	T _J = 125°C			-10	_
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = ±20 V				±100	nA
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D} = -250 \ \mu A$		-1.0	-1.9	-3.0	V
Gate Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-4.7		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = -10 V, I	_D = –2.1 A		105	160	mΩ
		V _{GS} = -4.5 V,	I _D = -1.6 A		190	280	
Forward Transconductance	9 _{FS}	V _{DS} = -5.0 V, I _D = -2.1 A			2.7		S
CHARGES AND CAPACITANCES							
Input Capacitance	C _{ISS}	V _{DS} = –15 V, f = 1.0 MHz, V _{GS} = 0 V			281		pF
Output Capacitance	C _{OSS}				50		1
Reverse Transfer Capacitance	C _{RSS}				28		_
Total Gate Charge	Q _{G(TOT)}				5.6	7.1	nC
Threshold Gate Charge	Q _{G(TH)}	$V_{GS} = -10 \text{ V}, V_{DS} = -5.0 \text{ V},$ $I_D = -2.1 \text{ A}$			0.65		_
Gate-to-Source Charge	Q _{GS}				1.2		
Gate-to-Drain Charge	Q _{GD}				0.90		_
SWITCHING CHARACTERISTICS (No	ote 4)				•		
Turn-On Delay Time	t _{d(on)}				7.6	14	ns
Rise Time	t _r	$V_{CC} = -4.5 V_{.} V_{DD} = -15 V_{.}$			9.2	23	
Turn–Off Delay Time	t _{d(off)}	$I_{\rm D} = -1.0$ Å, R	$R_{\rm G} = 6.0 \ \Omega$		12.5	20	
Fall Time	t _f				4.5	12	
DRAIN-SOURCE DIODE CHARACTE	RISTICS						
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 V_{CS}$	$T_J = 25^{\circ}C$		-0.79	-1.2	V
		$I_{\rm S} = -0.8$ Å	T _J = 125°C		-0.65		
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dI _S /dt = 100 A/µs, I _S = -0.8 A			8.0		
Charge Time	t _a				5.7		ns
Discharge Time	t _b				2.3		
Reverse Recovery Charge	Q _{RR}				3		nC

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
Switching characteristics are independent of operating junction temperatures.