Triacs Silicon Bidirectional Thyristors ... designed primarily for full-wave ac control applications, such as light dimmers, motor controls, heating controls and power supplies. - Blocking Voltage to 600 Volts - All Diffused and Glass Passivated Junctions for Greater Parameter Uniformity and Stability - Small, Rugged, Thermowatt Construction for Low Thermal Resistance, High Heat Dissipation and Durability #### MAXIMUM RATINGS (T_J = 25°C unless otherwise noted.) | Rating | Symbol | Value | Unit | | |--|--------|------------------|-------------|------------------| | Repetitive Peak Off-State Voltage, Note 1
T _J = 25 to 100°C) | VDRM | - | Volts | | | | 3 | | 200 | | | SC143 [|) | 1 | 400 | | | SC149 | VI | | 600 | | | RMS On-State Current | | IT(RMS) | | Amps | | $T_C = 80^{\circ}C$ | SC143 | , , , , , , | 8 | | | | SC149 | | 12 | | | Peak Non-Repetitive Surge Current | | ITSM | - | Amps | | One Full Cycle, 60 Hz | SC143 | | 120 | | | | SC149 | | 120 | | | Circuit Fusing Considerations | | I ² t | _ | A ² s | | t = 1 ms | SC143 | | 20 | | | | SC149 | 1 | 25 | | | Critical Rate-of-Rise of On-State Current | di/dt | 10 | A/μs | | | Peak Gate Power (Pulse Width = 10 μ s) | PGM | 10 | Watts | | | Average Gate Power (T _C = +80°C, t = 8.3 ms) | | PG(AV) | 0.5 | Watt | | Peak Gate Current (Pulse Width = 10 μs) | | IGM | 3.5 | Amps | | Peak Gate Voltage | | V _{GM} | 10 | Volts | | Operating Junction Temperature Range | | TJ | -40 to +100 | °C | | Storage Temperature Range | | T _{stg} | -40 to +125 | °C | #### THERMAL CHARACTERISTICS | Characteristic | | Symbol | Max | Unit | | |----------------|--------------------------------------|-------------------|-----|------|--| | | Thermal Resistance, Junction to Case | R _Ø JC | 2.2 | °C/W | | ### ELECTRICAL CHARACTERISTICS (Tc = +25°C unless otherwise noted.) | Characteristic | Symbol | Min | Тур | Max | Unit | |---|--------|-----|-----|------|-------| | Peak Off-State Current (1) | IDRM | | | | mA | | $(V_D = Rated V_{DRM}, Gate Open)$ $T_C = +25^{\circ}C$ | | l — | _ | 0.1 | | | $T_C = +100^{\circ}C$ | | | _ | 0.5 | | | Peak On-State Voltage | VTM | | | | Volts | | Pulse Width = 1 ms, Duty Cycle < 2%. | | l | | | | | I _{TM} = 11 A Peak | | | l — | 1.55 | | | ITM = 17 A Peak | | | _ | 1.65 | | (cont.) Note 1. VDRM for all types can be applied on a continuous basis. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded. ## **SC143 Series SC149 Series** **TRIACs** 8 and 12 AMPERES RMS 200 thru 600 VOLTS #### SC143 Series • SC149 Series ### **ELECTRICAL CHARACTERISTICS** — continued ($T_C = +25^{\circ}C$ unless otherwise noted) | Characteristic | | | Symbol | Min | Тур | Max | Unit | |---|--|---|-----------------|-----------------------------------|------------|---|----------| | Critical Rate-of-Rise of Off-State Voltage (1) (VD = Rated VDRM, Gate Open, Exponential Waveform) T | C = 100°C | SC143 Series
SC149 Series | dv/dt | = | 150
200 | _ | Volts/μs | | Critical Rate-of-Rise of Commutating Off-State VIT(RMS) = Rated RMS On-State Current VD = Rated VDRM, Gate Open SC143 Commutating di/dt = 4.1 A/ms SC149 Commutating di/dt = 6.1 A/ms | /oltage (1) | T _C = 80°C | dv/dt(C) | 4 | <u>-</u> | _ | Volts/μs | | DC Gate Trigger Current (2)
(V _D = 12 Vdc)
Trigger Mode | | | IGТ | | | | mAdc | | MT2(+), Gate(+), R _L = 100 Ohms
MT2(-), Gate(-), R _L = 100 Ohms
MT2(+), Gate(-), R _L = 50 Ohms, T _C = -40
MT2(-), Gate(-), R _L = 50 Ohms, T _C = -40
MT2(-), Gate(-), R _L = 25 Ohms, T _C = -40 | °C | | | | | 50
50
50
80
80
80 | | | DC Gate Trigger Voltage (2) (V _D = 12 Vdc) Trigger Mode | | | V _{GT} | | | | Vdc | | MT2(+), Gate(+), R _L = 100 Ohms MT2(-), Gate(-), R _L = 100 Ohms MT2(+), Gate(-), R _L = 50 Ohms MT2(+), Gate(+), R _L = 50 Ohms, T _C = -40 MT2(-), Gate(-), R _L = 50 Ohms, T _C = -40 MT2(+), Gate(-), R _L = 25 Ohms, T _C = -40 MT2(+), Gate(-), R _L = 1000 Ohms, T _C = 10 MT2(-), Gate(-), R _L = 1000 Ohms, T _C = 10 MT2(+), Gate(-), R _L = 1000 Ohms, T _C = 10 MT2(-), Gate(-), R _L = 1000 Ohms, T _C = 10 | °C
°C
10°C (2,3)
10°C (2,3)
10°C (2,3) | | |

0.2
0.2
0.2 | | 2.5
2.5
2.5
3.5
3.5
3.5
————————————————————————— | | | Holding Current (1)
(Main Terminal Voltage = 24 Vdc,
Peak Initiating Current = 0.5 A,
Pulse Width = 1 ms, Duty Cycle ≤ 2%.
Gate Trigger Source = 7 V, 20 Ohms) | | T _C = 25°C
T _C = -40°C | lн | _ | _ | 50
100 | mAdc | | Latching Current (2) (Main Terminal Source Voltage = 24 Vdc, Gate Trigger Source = 15 V, 100 Ohms) | | - با با | ΙL | | | | mAdc | | Trigger Mode MT2(+), Gate(-) MT2(-), Gate(-) MT2(+), Gate(-) MT2(+), Gate(+), T _C =40°C MT2(-), Gate(-), T _C =40°C MT2(+), Gate(-), T _C =40°C | | | | | | 100
100
200
200
200
200
400 | | - NOTES: 1. Values apply for either polarity of Main Terminal 2 characteristics referenced to Main Terminal 1. 2. Main Terminal 1 is the reference terminal. 3. With V_D equal to rated off-state voltage.