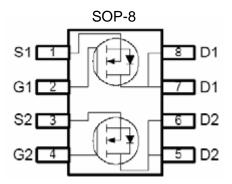


Description

This N-Channel enhancement mode power FETs are produced with high cell density, DMOS trench technology, which is especially used to minimize on-state resistance. This device is suitable for use as a load switch, power management in PWM controlled DC/DC Converter and push-pull DC/AC Inverter Systems.

Features

- V_{DS} 60V, V_{GS} 20V, I_D 5.5A
- R_{DS(ON)}@10V, 30mΩ (typ.)
- R_{DS(ON)}@4.5V, 35mΩ (typ.)


Absolute Maximum Ratings

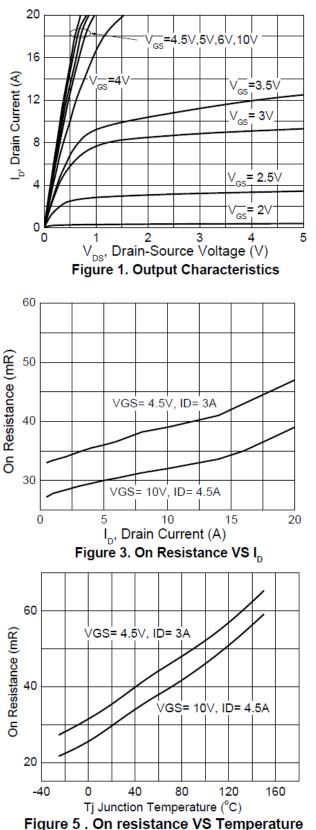
Parameter	Symbol	Max	Unit
Drain-Source Voltage	V _{DSS}	60	V
Gate-Source Voltage	V_{GSS}	±20	V
Drain Current - Continuous	I _D	5.5	А
Total Power Dissipation (Note1,2)	PD	1	W
Operating and Storage Junction Temperature Range	T_J/T_{STG}	-55/150	°C

Note: 1. Surface Mounted on 1in pad area, t \leq 10sec.

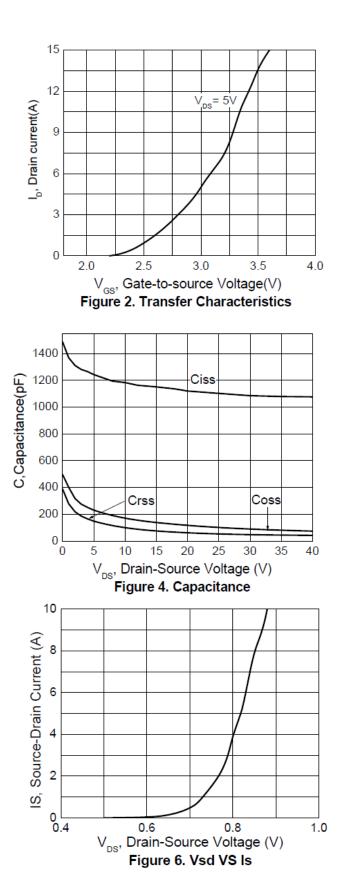
2. Rating for a single chip.

Packaging Type

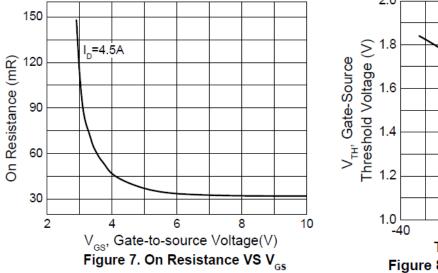
Ordering information


Electrical Characteristics

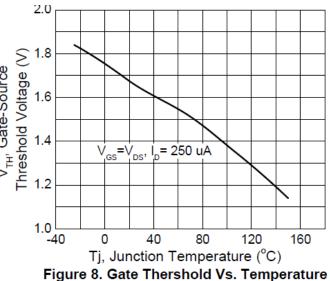
 $T_A\!\!=\!\!25^\circ\!\!\mathbb{C}$, unless otherwise noted.


Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit			
Off characteristics									
Drain-Source Breakdown Voltage	$V_{(BR)DSS}$	V_{GS} =0V, I _D =250 uA	60			V			
Gate Leakage Current	I _{GSS}	$V_{DS}=0V, V_{GS}=\pm 20V$			±100	uA			
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =60V, V _{GS} =0V			1	uA			
On characteristics									
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{DS}=250$ uA	1	1.4	3	V			
Drain-Source	R _{DS(ON)}	V _{GS} =10V, I _D =5.5A		30	41	mΩ			
On-Resistance		V_{GS} =4.5V, I _D =4.5A		35	52				
Drain-Source Diode Characteristics And Maximum Ratings									
Diode Forward Voltage	V_{SD}	I _S =2A, V _{GS} =0V	0.5	0.77	1	V			
Switching characteristics									
Turn-On Time	td(on)				15				
	tr	V_{GS} =10V, R _L =5.4 Ω , V _{DS} =30V,	0V, 2	20	nS				
Turn-Off Time	td(off)	$R_{GEN}=3\Omega$, $I_{D}=5.5A$			40	- 15			
	tf				15				
		Dynamic characteristics							
Input Capacitance	Ciss	V _{GS} =0V, V _{DS} =10V, f=1MHz		1180		рF			
Output Capacitance	Coss			170					
REVERSE Transfer Capacitance	Crss			100					

ACE4826B Dual N-Channel Enhancement Mode MOSFET

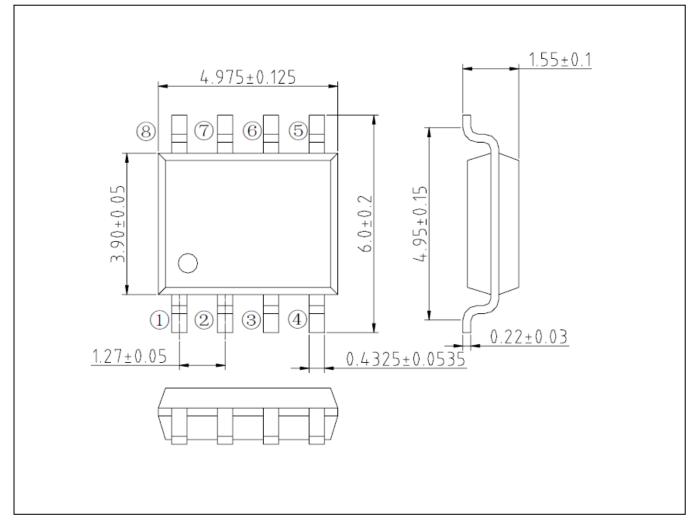


Typical Performance Characteristics



ACE4826B Dual N-Channel Enhancement Mode MOSFET

Typical Performance Characteristics



ACE4826B
Dual N-Channel Enhancement Mode MOSFET

Packing Information

SOP-8

Notes

ACE does not assume any responsibility for use as critical components in life support devices or systems without the express written approval of the president and general counsel of ACE Electronics Co., LTD. As sued herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ACE Technology Co., LTD. http://www.ace-ele.com/