FRIF IM.

- Very Low Series Resistance
- Quartz Stability
- Surface-Mount, Solder Seal Package with 4.8 x 5.2 mm Footprint

The RO2180B is a true one-port, surface-acoustic-wave (SAW) resonator in a surface-mount ceramic case. It provides reliable, fundamental-mode, quartz frequency stabilization.

Absolute Maximum Ratings

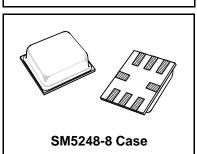
U		
Rating	Value	Units
CW RF Power Dissipation	+0	dBm
DC Voltage Between Terminals (Observe ESD Precautions)	±30	VDC
Case Temperature	-40 to +85	°C
Soldering Temperature	+250	°C

Electrical Characteristics

Characteristic		Sym	Notes	Minimum	Typical	Maximum	Units
Frequency (+25 °C)	r (+25 °C) Nominal Frequency f _C		2245	433.845	433.92	433.995	MHz
	Tolerance from 433.92 MHz	Df _C	2, 3, 4, 5	-		±75	kHz
Insertion Loss		IL	2, 5, 6		2		dB
Quality Factor	Unloaded Q	Q _U	5, 6, 7		11,535		
	50 Ω Loaded Q	QL		-	1,811		
Temperature Stability	perature Stability Turnover Temperature T _O			25		°C	
	Turnover Frequency	f _O	6, 7, 8	-	f _{C+} 16		
	Frequency Temperature Coefficient	FTC		-	0.032		ppm/°C ²
Frequency Aging	Absolute Value during the First Year	fA	1		≤10		ppm/yr
DC Insulation Resistance between Any Two Terminals			5	1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M			18.63		Ω
	Motional Inductance	L _M	5, 6, 7, 9		78.79		μH
	Motional Capacitance	CM		-	1.71		fF
	Shunt Static Capacitance	CO	5, 6, 7, 9		1.82	1	pF
Test Fixture Shunt Inductance		L _{TEST}	2, 7		63.13		nH
Lid Symbolization (in Addition to Lot and/or Date Code)		295					

 CAUTION: Electrostatic Sensitive Device. Observe precautions for handling. Notes:

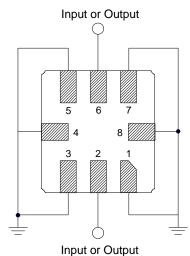
- Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 2. The frequency, f_C, is measured at the minimum insertion loss point, IL_{MIN}, with the resonator in the 50 Ω test system (VSWR \leq 1.2:1). The shunt inductance, L_{TEST}, is tuned for parallel resonance with C_O at f_C. Typically, f_{OSCILLATOR} or f_{TRANSMITTER} is approximately equal to the resonator f_C.
- 3. One or more of the following United States patents apply: 4,454,488 and 4,616,197.
- Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 5. Unless noted otherwise, case temperature $T_C = +25^{\circ}C \pm 5^{\circ}C$.
- 6. The design, manufacturing process, and specifications of this device are subject to change without notice.


- 7. Derived mathematically from one or more of the following directly measured parameters: $f_C,\,IL,\,3$ dB bandwidth, f_C versus $T_C,\,and\,C_O.$
- 8. Turnover temperature, T_O , is the temperature of maximum (or turnover) frequency, f_O . The nominal frequency at any case temperature, T_C , may be calculated from: $f = f_O [1 FTC (T_O T_C)^2]$. Typically, *oscillator* T_O is approximately equal to the specified *resonator* T_O .
- 9. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C_O is the static (nonmotional) capacitance between the two terminals measured at low frequency (10 MHz) with a capacitance meter. The measurement includes parasitic capacitance with "NC" pads unconnected. Case parasitic capacitance is approximately 0.05 pF. Transducer parallel capacitance can be calculated as: $C_P \approx C_O 0.05$ pF.

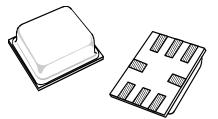
433.92 MHz

SAW

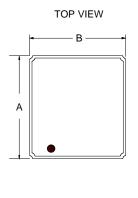
Resonator

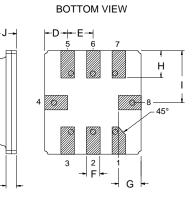


Electrical Connections


This one-port, eight-terminal solder seal resonator is bidirectional. However, impedances and circuit board parasitics may not be symmetrical, requiring slightly different oscillator component-matching values.

Pin	Connection		
1	Ground		
2	Input or Output		
3	Ground		
4	Ground		
5	Ground		
6	Output or Input		
7	Ground		
8	Ground		
8	Ground		


Typical Circuit



1, 3, 4, 5, 7, 8 No Internal Connection

Case Design

Dimensions	Millimeters			Inches		
Dimensions	Min	Nom	Max	Min	Nom	Max
A	5.21	5.33	5.46	0.205	0.210	0.215
В	4.83	4.95	5.08	0.190	0.195	0.200
С	0.38	0.51	0.64	0.015	0.020	0.025
D	1.07	1.19	1.32	0.042	0.047	0.052
E	1.14	1.27	1.40	0.045	0.050	0.055
F	0.58	0.71	0.84	0.023	0.028	0.033
G	1.07	1.19	1.32	0.042	0.047	0.052
Н	1.32	1.45	1.57	0.052	0.057	0.062
I	2.54	2.67	2.79	0.100	0.105	0.110
J	1.52	1.78	2.03	0.060	0.070	0.080

C-