3 ### **Features** - Fast Read Access Time 100 ns - Unregulated Battery Power Supply Range, 2.7 V to 3.6 V - Compatible with JEDEC Standard AT27C040 - Low Power CMOS Operation - 20 μA max. Standby - 29 mW max. Active at 5 MHz for Vcc = 3.6 V - Wide Selection of JEDEC Standard Packages - 32-Lead 600-mil PDIP and Cerdip - 32-Pad PLCC and LCC - 32-Lead TSOP - High Reliability CMOS Technology 2,000 V ESD Protection - 200 mA Latchup Immunity Rapid Programming 100 μs/byte (typical) - Two-Line Control - CMOS and TTL Compatible Inputs and Outputs JEDEC Standard for LVTTL and LVBO - Integrated Product Identification Code - Commercial and Industrial Temperature Ranges ## Description The AT27BV040 chip is a high performance, low power, low voltage, 4,194,304 bit ultraviolet erasable and electrically programmable read only memory (EPROM) organized as 512K by 8 bits. It requires only one supply in the range of 2.7 to 3.6 V in normal read mode operation, making it ideal for fast, portable systems using either regulated or unregulated battery power. Atmel's innovative design techniques provide fast speeds that rival 5-V parts while keeping the low power consumption of a 3-V supply. At $V_{CC} = 2.7 \text{ V}$, any byte can be accessed in less than 100 ns. With a typical power draw of only 18 mW at 5 MHz and $V_{CC} = 3 \text{ V}$, the AT27BV040 consumes less than one-fifth the power of a standard 5-V EPROM. Standby mode supply current is typically less than 1 μ A at 3 V. The AT27BV040 simplifies system design and stretches battery lifetime even further by eliminating the need for power supply regulation. ## **Pin Configurations** | Pin Name | Function | |----------|---------------| | A0-A18 | Addresses | | 00-07 | Outputs | | CE | Chip Enable | | ŌĒ | Output Enable | ### LCC, PLCC Top View CDIP, PDIP Top View | | _ | | | _ | |--|----|---------|----------|---| | VPP C | 1 | \circ | 32 | b vcc | | A16 🗆 | 2 | | 31 | D VCC D A18 D A17 D A14 D A8 D A9 D A10 CE D O7 D O6 D O5 D O4 D O3 | | A15 🗆 | 2 | | 30 | D A17 | | A12 C | 4 | | 29 | D A14 | | A12 C
A7 C
A6 C
A5 C | 5 | | 28 | D A13 | | A6 🗆 | 6 | | 27
26 | D A8 | | A5 🗆 | 7 | | 26 | □ A9 | | A4 C
A3 C
A2 C
A1 C
A0 C
O0 C | 8 | | 25 | □ A11 | | A3 [| 9 | | 24 | DE OE | | A2 🗆 | 10 | | 23 | □ A10 | | A1 🗆 | 11 | | 22 | □ CE | | A0 🗆 | 12 | | 21 | 07 | | O0 E | 13 | | 20 | D 06 | | 01 | 14 | | 19 | □ 05 | | O2 [| 15 | | 18 | □ 04 | | GND C | 16 | | 17 | □ 03 | | | | | | | ## TSOP Top View Type 1 | A11 10 10 | 1 0 | 32 24 | ŀ | ••• | OE
CE | |--------------|------|-------|---|-----|----------| | A8 A9 | 3 2 | 30 31 | Ĕ | A10 | CE | | A14 A13 E 4 | 5 | 28 29 | Ĕ | 07 | 06 | | A18 A17 E 6 | 7 | 26 27 | Ĕ | O5 | 04 | | VPP VCC B 8 | 9 | 25 | Ĕ | 03 | GND | | A15 A16 E 10 | 11 | 22 | Ę | 02 | 01 | | A7 A12 E 12 | 13 | 20 19 | E | 00 | A0 | | A5 🗆 | | 18 | F | A1 | A2 | | A5 A4 2 16 | , ·- | 17 | Þ | A3 | | 4 Megabit (512K x 8) Unregulated Battery-Voltage High Speed UV Erasable CMOS ## **Preliminary** **EPROM** ## **Description** (Continued) The AT27BV040 comes in a choice of industry standard JEDEC-approved packages, including: one-time programmable (OTP) plastic PDIP, PLCC, and TSOP, as well as windowed ceramic Cerdip and LCC. All devices feature two-line control $(\overline{CE}, \overline{OE})$ to give designers the flexibility to prevent bus conten- The AT27BV040 operating with V_{CC} at 3.0 V produces TTL level outputs that are compatible with standard TTL logic devices operating at $V_{CC} = 5.0 \text{ V}$. At $V_{CC} = 2.7 \text{ V}$, the part is compatible with JEDEC approved low voltage battery operation (LVBO) interface specifications. Atmel's AT27BV040 has additional features to ensure high quality and efficient production use. The Rapid Programming Algorithm reduces the time required to program the part and guarantees reliable programming. Programming time is typically only 100 µs/byte. The Integrated Product Identification Code electronically identifies the device and manufacturer. This feature is used by industry standard programming equipment to select the proper programming algorithms and voltages. The AT27BV040 programs exactly the same way as a standard 5-V AT27C040 and uses the same programming equipment. ### **Erasure Characteristics** The entire memory array of the AT27BV040 is erased (all outputs read as VOH) after exposure to ultraviolet light at a wavelength of 2537 Å. Complete erasure is assured after a minimum of 20 minutes exposure using 12,000 μW/cm² intensity lamps spaced one inch away from the chip. Minimum erase time for lamps at other intensity ratings can be calculated from the minimum integrated erasure dose of 15 W-sec/cm². To prevent unintentional erasure, an opaque label is recommended to cover the clear window on any UV erasable EPROM which will be subjected to continuous fluorescent indoor lighting or sunlight. ### **Block Diagram** ## **Absolute Maximum Ratings*** | Temperature Under Bias40°C to +85°C | |--| | Storage Temperature65°C to +125°C | | Voltage on Any Pin with
Respect to Ground2.0 V to +7.0 V ⁽¹⁾ | | Voltage on A9 with
Respect to Ground2.0 V to +14.0 V ⁽¹⁾ | | V _{PP} Supply Voltage with Respect to Ground2.0 V to +14.0 V ⁽¹⁾ | | Integrated UV Erase Dose7258 W•sec/cm ² | *NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 1. Minimum voltage is -0.6 V dc which may undershoot to -2.0 V for pulses of less than 20 ns. Maximum output pin voltage is V_{CC} + 0.75 V dc which may be exceeded if certain precautions are observed (consult application notes) and which may overshoot to +7.0 V for pulses of less than 20 ns. ## Operating Modes | Mode \ Pin | CE | ŌĒ | Ai | V _{PP} | Vcc | Outputs | |---|-----------------|-----------------|---|------------------|---------|------------------------| | Read ⁽²⁾ | VIL | VIL | Ai | X ⁽¹⁾ | Vcc (2) | Dout | | Output Disable ⁽²⁾ | X | ViH | Х | Х | Vcc (2) | High Z | | Standby ⁽²⁾ | V _{IH} | Х | Х | Х | Vcc (2) | High Z | | Rapid Program ⁽³⁾ | VIL | ViH | Ai | V _{PP} | Vcc (3) | DiN | | PGM Verify ⁽³⁾ | Х | VIL | Ai | Vpp | Vcc (3) | Dout | | PGM Inhibit ⁽³⁾ | ViH | V _{IH} | Х | V _{PP} | Vcc (3) | High Z | | Product Identification ^{(3),(5)} | V _{IL} | VIL | A9=V _H ⁽⁴⁾
A0=V _{IH} or V _{IL}
A1-A18=V _{IL} | х | Vcc (3) | Identification
Code | - Notes: 1. X can be V_{IL} or V_{IH}. - 2. Read, output disable, and standby modes require $V_{CC} \le 3.7 \text{ V}$. - 3. Refer to Programming Characteristics. Programming modes require $V_{CC} \ge 4.5 \text{ V}$. - 4. $V_H = 12.0 \pm 0.5 V$. - 5. Two identifier bytes may be selected. All Ai inputs are held low (VIL), except A9 which is set to VH and A0 which is toggled low (VIL) to select the Manufacturer's Identification byte and high (VIH) to select the Device Code byte. ## D.C. and A.C. Operating Conditions for Read Operation | | | AT27BV040 | | | | | |------------------------------|------|----------------|----------------|----------------|--|--| | | | -10 | -12 | -15 | | | | Operating Temperature | Com. | 0°C - 70°C | 0°C - 70°C | 0°C - 70°C | | | | (Case) | Ind. | -40°C - 85°C | -40°C - 85°C | -40°C - 85°C | | | | V _{CC} Power Supply | | 2.7 V to 3.6 V | 2.7 V to 3.6 V | 2.7 V to 3.6 V | | | ## D.C. and Operating Characteristics for Read Operation (VCC = 2.7 V to 3.6 V unless otherwise specified) | Symbol | Parameter | Condition | _ | Min | Max | Units | |-----------------------------------|---|--|------|----------------------|----------------------|-------| | ILI | Input Load Current | V _{IN} = 0 V to V _{CC} | | | ±1 | μΑ | | lLO | Output Leakage Current | V _{OUT} = 0 V to V _{CC} | | | ±5 | μΑ | | IPP1 (2) | V _{PP} ⁽¹⁾ Read/Standby Current | VPP = VCC | | _ | 10 | μΑ | | lon | V _{CC} ⁽¹⁾ Standby Current | I _{SB1} (CMOS), $\overline{\text{CE}} = \text{V}_{\text{CC}} \pm 0.3 \text{ V}$ | | | 20 | μĀ | | ISB | | I _{SB2} (TTL), $\overline{CE} = 2.0$ to V _{CC} + 0.5 V | _ | | 100 | μÄ | | loo | V _{CC} Active Current | $f = 5 \text{ MHz}, I_{OUT} = 0 \text{ mA},$ | Com. | | 8 | mA | | Icc Vcc Active Current | ACC Active Carrent | $\overline{CE} = V_{IL}, V_{CC} = 3.6 \text{ V}$ | Ind. | | 10 | mA | | V _{IL} Input Low Voltage | | Vcc = 3.0 to 3.6 V | | -0.6 | 0.8 | V | | | | V _{CC} ≈ 2.7 to 3.6 V | | -0.6 | 0.2xV _{CC} | V | | ViH | Input High Voltage | V _{CC} ≈ 3.0 to 3.6 V | | 2.0 | V _{CC} +0.5 | V | | VIH | mput riigii voltage | V _{CC} ≈ 2.7 to 3.6 V | | 0.7xVcc | V _{CC} +0.5 | V | | | | loL = 2.0 mA | | | 0.4 | V | | Vol | Output Low Voltage | I _{OL} = 100 μA | | | 0.2 | V | | | | I _{OL} = 20 μA | | | 0.1 | V | | Vон | | I _{OH} = -2.0 mA | | 2.4 | | V | | | Output High Voltage | I _{OH} = -100 μA | | V _{CC} -0.2 | | V | | | | I _{OH} = -20 μA | | V _{CC} -0.1 | | V | Notes: 1. V_{CC} must be applied simultaneously with or before V_{PP} , 2. V_{PP} may be connected directly to V_{CC} , except during program-and removed simultaneously with or after V_{PP} . ming. The supply current would then be the sum of I_{CC} and I_{PP} . ## A.C. Characteristics for Read Operation (VCC = 2.7 V to 3.6 V) | | | | AT27BV040 | | | | | | | |-----------------------|--|---------------|-----------|-----|-----|-----|-----|-----|-------| | | | | -1 | 10 | -1 | 12 | | 15 | | | Symbol | Parameter | Condition | Min | Max | Min | Max | Min | Max | Units | | tacc (3) | Address to Output Delay | CE = OE = VIL | | 100 | | 120 | | 150 | ns | | tce (2) | CE to Output Delay | OE = VIL | | 100 | | 120 | | 150 | ns | | toE (2,3) | OE to Output Delay | CE = VIL | | 50 | | 50 | | 60 | ns | | t _{DF} (4,5) | OE or CE High to Output Float | | | 40 | | 40 | | 50 | ns | | tон | Output Hold from Address, CE or OE, whichever occurred first | | 0 | | 0 | | 0 | | ns | Notes: 2, 3, 4, 5. - see AC Waveforms for Read Operation. ## A.C. Waveforms for Read Operation (1) ## **Input Test Waveform and Measurement Level** t_R, t_F < 20 ns (10% to 90%) #### Notes: - Timing measurement references are 0.8 V and 2.0 V. Input AC driving levels are 0.45 V and 2.4 V. See Input Test Waveforms and Measurement Levels. - 2. \overline{OE} may be delayed up to t_{CE} - t_{OE} after the falling edge of \overline{CE} without impact on t_{CE} . - 3. OE may be delayed up to tACC-tOE after the address is valid without impact on tACC. - 4. This parameter is only sampled and is not 100% tested. - Output float is defined as the point when data is no longer driven. ## **Output Test Load** Note: $C_L = 100 \text{ pF}$ including jig capacitance. ## Pin Capacitance (f = 1 MHz, T = 25°C) (1) | | , | | | | |------|-----|-----|-------|-----------------------| | | Тур | Max | Units | Conditions | | Cin | 4 | 8 | pF | V _{IN} = 0 V | | Соит | 8 | 12 | pF | Vout = 0 V | Notes: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested. ## **Programming Waveforms** (1) #### Notes: - 1. The Input Timing Reference is 0.8 V for V_{IL} and 2.0 V for V_{IH} . - 2. t_{OE} and t_{DFP} are characteristics of the device but must be accommodated by the programmer. - 3. When programming the AT27BV040 a $0.1-\mu F$ capacitor is required across V_{PP} and ground to suppress spurious voltage transients. AT27BV040 ## **D.C. Programming Characteristics** $T_A = 25 \pm 5^{\circ}C$, $V_{CC} = 6.5 \pm 0.25 V$, $V_{PP} = 13.0 \pm 0.25 V$ | Sym- | ; | Test | Li | mits | | |------------------|---|---|------|---------------------|-------| | bol | Parameter | Conditions | Min | Max | Units | | lLI | Input Load
Current | V _{IN} =V _{IL} ,V _{IH} | | 10 | μΑ | | VIL | Input Low Level | (All Inputs) | -0.6 | 8.0 | ٧ | | ViH | Input High Level | | 2.0 | V _{CC} +.7 | ٧ | | Vol | Output Low Volt. | I _{OL} =2.1 mA | | .45 | ٧ | | Voн | Output High Volt. | l _{OH} =-400 μA | 2.4 | | ٧ | | Icc2 | V _{CC} Supply Curre
(Program and Ve | | | 40 | mA | | l _{PP2} | V _{PP} Supply
Current | CE=V _{IL} | | 20 | mA | | VID | A9 Product
Identification
Voltage | | 11.5 | 12.5 | ٧ | ## A.C. Programming Characteristics $T_A = 25 \pm 5^{\circ}C$, $V_{CC} = 6.5 \pm 0.25 V$, $V_{PP} = 13.0 \pm 0.25 V$ | Sym- | Parameter | Test
Conditions*
(see Note 1) | Liı
Min | nits
May | Units | |-----------------|-------------------------------|-------------------------------------|------------|-------------|-------| | | | | | IVICA | | | tas | Address Setup Tir | ne | 2 | | μS | | toes | OE Setup Time | | 2 | | μS | | tos | Data Setup Time | | 2 | | μS | | tan | Address Hold Tim | e | 0 | | μs | | t _{DH} | Data Hold Time | | 2 | | μs | | tDFP | OE High to Output Float Delay | (Note 2) | 0 | 130 | ns | | typs | V _{PP} Setup Time | | 2 | | μS | | tvcs | V _{CC} Setup Time | | 2 | | μ\$ | | tpw | CE Program
Pulse Width | (Note 3) | 95 | 105 | μs | | toE | Data Valid from OE | (Note 2) | | 150 | ns | ### *A.C. Conditions of Test: | Input Rise and Fall Times (10% to 90%). | 20 ns | |---|------------------| | Input Pulse Levels | 0.45 V to 2.4 V | | Input Timing Reference Level | . 0.8 V to 2.0 V | | Output Timing Reference Level | 0.8 V to 2.0 V | #### Notes: - V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP}. - This parameter is only sampled and is not 100% tested. Output Float is defined as the point where data is no longer driven see timing diagram. - 3. Program Pulse width tolerance is $100 \,\mu sec \pm 5\%$. # Atmel's 27BV040 Integrated Product Identification Code | | Pins | | | | | | Hex | | | | |--------------|------|----|----|----|----|----|-----|----|----|------| | Codes | A0 | 07 | O6 | O5 | 04 | 03 | 02 | 01 | 00 | Data | | Manufacturer | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1E | | Device Type | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0B | Note: 1. The AT27BV040 has the same Product Identification Code as the AT27C040. Both are programming comnatible ## **Rapid Programming Algorithm** A 100 μs \overline{CE} pulse width is used to program. The address is set to the first location. V_{CC} is raised to 6.5 V and Vpp is raised to 13.0 V. Each address is first programmed with one 100 μs \overline{CE} pulse without verification. Then a verification/reprogramming loop is executed for each address. In the event a byte fails to pass verification, up to 10 successive 100 μs pulses are applied with a verification after each pulse. If the byte fails to verify after 10 pulses have been applied, the part is considered failed. After the byte verifies properly, the next address is selected until all have been checked. Vpp is then lowered to 5.0 V and VCC to 5.0 V. All bytes are read again and compared with the original data to determine if the device passes or fails. ## **Ordering Information** | tacc
(ns) | Icc (mA)
Vcc = 3.6 V | | Ordering Code | Package | Operation Range | | |--------------|-------------------------|---------|--|-------------------------------------|-------------------------------|--| | (113) | Active | Standby | | | | | | 100 | 8 | 0.02 | AT27BV040-10DC
AT27BV040-10JC
AT27BV040-10LC
AT27BV040-10PC
AT27BV040-10TC | 32DW6
32J
32LW
32P6
32T | Commercial
(0°C to 70°C) | | | 100 | 10 | 0.02 | AT27BV040-10DI
AT27BV040-10JI
AT27BV040-10LI
AT27BV040-10PI
AT27BV040-10TI | 32DW6
32J
32LW
32P6
32T | Industrial
(-40°C to 85°C) | | | 120 | 8 | 0.02 | AT27BV040-12DC
AT27BV040-12JC
AT27BV040-12LC
AT27BV040-12PC
AT27BV040-12TC | 32DW6
32J
32LW
32P6
32T | Commercial
(0°C to 70°C) | | | 120 | 10 | 0.02 | AT27BV040-12DI
AT27BV040-12JI
AT27BV040-12LI
AT27BV040-12PI
AT27BV040-12TI | 32DW6
32J
32LW
32P6
32T | Industrial
(-40°C to 85°C) | | | 150 | 8 | 0.02 | AT27BV040-15DC
AT27BV040-15JC
AT27BV040-15LC
AT27BV040-15PC
AT27BV040-15TC | 32DW6
32J
32LW
32P6
32T | Commercial
(0°C to 70°C) | | | 150 | 10 | 0.02 | AT27BV040-15DI
AT27BV040-15JI
AT27BV040-15LI
AT27BV040-15PI
AT27BV040-15TI | 32DW6
32J
32LW
32P6
32T | Industrial
(-40°C to 85°C) | | | Package Type | | | | | |--------------|--|-----|--|--| | 32DW6 | 32 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip) | | | | | 32J | 32 Lead, Plastic J-Leaded Chip Carrier OTP (PLCC) | | | | | 32LW | 32 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC) | · - | | | | 32P6 | 32 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP) | | | | | 32T | 32 Lead, Plastic Thin Small Outline Package OTP (TSOP) | | | | AT27BV040