Capacitor Array (IPC)

BENEFITS OF USING CAPACITOR ARRAYS

AVX capacitor arrays offer designers the opportunity to lower placement costs, increase assembly line output through lower component count per board and to reduce real estate requirements.

Reduced Costs

Placement costs are greatly reduced by effectively placing one device instead of four or two. This results in increased throughput and translates into savings on machine time. Inventory levels are lowered and further savings are made on solder materials, etc.

Space Saving

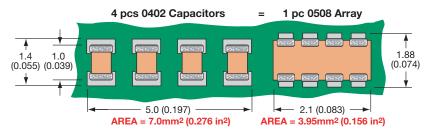
Space savings can be quite dramatic when compared to the use of discrete chip capacitors. As an example, the 0508 4-element array offers a space reduction of >40% vs. 4 x 0402 discrete capacitors and of >70% vs. 4 x 0603 discrete capacitors. (This calculation is dependent on the spacing of the discrete components.)

Increased Throughput

Assuming that there are 220 passive components placed in a mobile phone:

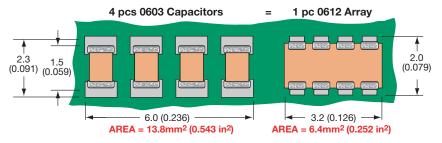
A reduction in the passive count to 200 (by replacing discrete components with arrays) results in an increase in throughput of approximately 9%.

A reduction of 40 placements increases throughput by 18%.


For high volume users of cap arrays using the very latest placement equipment capable of placing 10 components per second, the increase in throughput can be very significant and can have the overall effect of reducing the number of placement machines required to mount components:

If 120 million 2-element arrays or 40 million 4-element arrays were placed in a year, the requirement for placement equipment would be reduced by one machine.

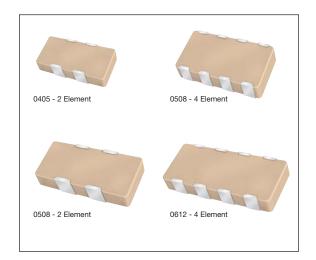
During a 20Hr operational day a machine places 720K components. Over a working year of 167 days the machine can place approximately 120 million. If 2-element arrays are mounted instead of discrete components, then the number of placements is reduced by a factor of two and in the scenario where 120 million 2-element arrays are placed there is a saving of one pick and place machine.


Smaller volume users can also benefit from replacing discrete components with arrays. The total number of placements is reduced thus creating spare capacity on placement machines. This in turn generates the opportunity to increase overall production output without further investment in new equipment.

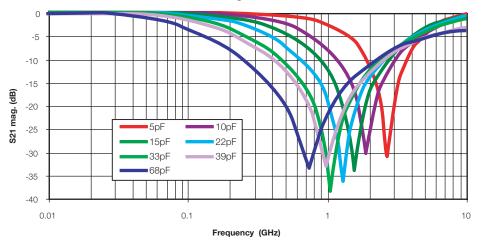
W2A (0508) Capacitor Arrays

The 0508 4-element capacitor array gives a PCB space saving of over 40% vs four 0402 discretes and over 70% vs four 0603 discrete capacitors.

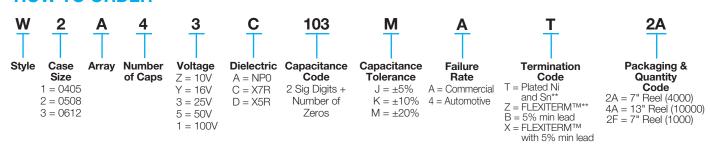
W3A (0612) Capacitor Arrays



The 0612 4-element capacitor array gives a PCB space saving of over 50% vs four 0603 discretes and over 70% vs four 0805 discrete capacitors.


GENERAL DESCRIPTION

AVX is the market leader in the development and manufacture of capacitor arrays. The smallest array option available from AVX, the 0405 2-element device, has been an enormous success in the Telecommunications market. The array family of products also includes the 0612 4-element device as well as 0508 2-element and 4-element series, all of which have received widespread acceptance in the marketplace.


AVX capacitor arrays are available in X5R, X7R and NPO (COG) ceramic dielectrics to cover a broad range of capacitance values. Voltage ratings from 6.3 Volts up to 100 Volts are offered. AVX also now offers a range of automotive capacitor arrays qualified to AEC-Q200 (see separate table).

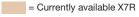
Key markets for capacitor arrays are Mobile and Cordless Phones, Digital Set Top Boxes, Computer Motherboards and Peripherals as well as Automotive applications, RF Modems, Networking Products, etc.

AVX Capacitor Array - W2A41A***K S21 Magnitude

HOW TO ORDER

**RoHS compliant

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

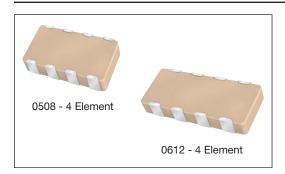

Capacitance Range - NP0/C0G

S	SIZE		0405			05	08			050	08			06	612	
	ements		2			2				4					4	$\neg \neg$
	Idering	R	eflow Only	,		Reflow				Reflow					v/Wave	,
Pac	ckaging		All Paper			All Pa					nbosse	b	F	aper/E		
Length	MM (in.)		00 ± 0.15 39 ± 0.00				± 0.15 ± 0.006)		1.30 ± .051 ±	0.15 0.006)			1.60 ± (0.063	± 0.150 ± 0.00	
Width	MM (in.)		37 ± 0.15 54 ± 0.00				± 0.15 ± 0.006)		2.10 ± .083 ±	0.15 0.006)			3.20 (0.126	± 0.20 ± 0.00	
Max.	MM		0.66				94			0.9					.35	
Thicknes		40	(0.026)	50	-10	_	037)	100	10	(0.0		1 400	10		053)	100
1R0	WVDC Cap 1.0	16	25	50	16	25	50	100	16	25	50	100	16	25	50	100
1R2 1R5	(pF) 1.2 1.5															
1R8	1.8															
2R2 2R7	2.2 2.7															
3R3	3.3															Н
3R9	3.9															
4R7	4.7															\perp
5R6 6R8	5.6 6.8															
8R2	8.2															
100	10															
120	12															
150 180	15 18															
220	22															
270	27															
330	33															
390 470	39 47															
560	56															
680	68															
820	82															
101 121	100 120															
151	150															
181	180															
221	220															
271 331	270 330															
391	390															
471	470															
561	560															
681 821	680 820															
102	1000															$\vdash \vdash$
122	1200															
152	1500															\sqcup
182 222	1800 2200															
272	2700															
332	3300								l							\square
392	3900															
472	4700								<u> </u>							$\vdash \vdash \vdash$
562 682	5600 6800															
822	8200				l											

Capacitance Range - X7R/X5R

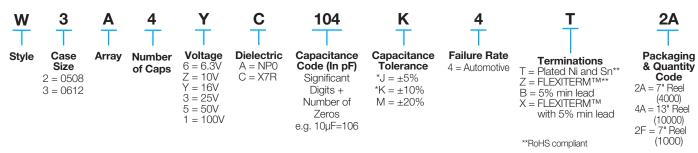
SIZ	Έ		03	06				0405	5				05	08					05	08					06	12		
# Elem				4				2						2					4						4			
Solder			Reflov					eflow C				F		/Wave	-					/Wave					Reflow			
Packaç		_	All P					All Pap			<u> </u>			aper						nboss					oer/En			
Length	MM (in.)		1.60 ±					00 ± 0 39 ± 0						± 0.15 ± 0.00						£ 0.15					.60 ±			
	MM		0.81 =					37 ± 0				_ `		± 0.00						£ 0.15	_				3.20 ±			
Width	(in.)		0.01 =			L		54 ± 0			L			± 0.00						£ 0.00			L		.126 ±			
Max.	MM		0.					0.66						94					0.9						1.3			
Thickness	(in.)		(0.0)		0.5		_	(0.026	_				<u> </u>	37)					(0.0)						(0.0)			T
WVDC		6	10	16	25	6	10	16	25	50	6	10	16	25	50	100	6	10	16	25	50	100	6	10	16	25	50	100
121 (µF)	120																											
151	150										_						_											
181 221	180 220																											
271	270																											
331	330																											
391 471	390 470																											
561	560																											
681	680																											
821	820																											
102 122	1000 1200																											
152	1500																											
182	1800																											
222 272	2200 2700																											
332	3300		///																									
392	3900																											
472	4700	_																				///						
562 682	5600 6800																											
822	8200																											
103 Cap																												
123 (µF) 153	0.012 0.015																											
183	0.015	\vdash							_																			
223	0.022																			1///								
273	0.027	<u> </u>																										
333 393	0.033 0.039																											
473	0.047																											
563	0.056																											
683 823	0.068 0.082																											
104	0.002																											
124	0.12					////																						
154	0.15	\vdash																					///		///			
184 224	0.18 0.22																											
274	0.27	L			L_			L_	<u>_</u>	L_										L_	<u></u>						<u>_</u>	L_
334	0.33																											
474 564	0.47 0.56																											
684	0.68																											
824	0.82																											
105 125	1.0	-				\vdash			_		///																	
125	1.2 1.5																											
185	1.8																											
225	2.2										////												///					
335 475	3.3 4.7																											
106	10																											
226	22																											
476 107	47 100																											
107	100										<u> </u>																	

= Currently available X5R


= Under development X7R, contact factory for advance samples

= Under development X5R, contact factory for advance samples

Automotive Capacitor Array (IPC)



As the market leader in the development and manufacture of capacitor arrays AVX is pleased to offer a range of AEC-Q200 qualified arrays to compliment our product offering to the Automotive industry. Both the AVX 0612 and 0508 4-element capacitor array styles are qualified to the AEC-Q200 automotive specifications.

AEC-Q200 is the Automotive Industry qualification standard and a detailed qualification package is available on request.

All AVX automotive capacitor array production facilities are certified to ISO/TS 16949:2002.

HOW TO ORDER

^{*}Contact factory for availability by part number for $K = \pm 10\%$ and $J = \pm 5\%$ tolerance.

NP0/C0G

	NP0/C0G									
S	IZE	0508		05	80			06	12	
No. o	f Elements	2		4				4	ļ	
W	VDC	100	16	25	50	100	16	25	50	100
1R0 1R2 1R5	Cap 1.0 (pF) 1.2 1.5									
1R8 2R2 2R7	1.8 2.2 2.7									
3R3 3R9 4R7	3.3 3.9 4.7									
5R6 6R8 8R2	5.6 6.8 8.2									
100 120 150	10 12 15									
180 220 270	18 22 27									
330 390 470	33 39 47									
560 680 820	56 68 82									
101 121 151	100 120 150									
181 221 271	180 220 270									
331 391 471	330 390 470									
561 681 821	560 680 820									
102 122 152	1000 1200 1500									
182 222 272	1800 2200 2700									
332 392 472	3300 3900 4700									
562 682 822	5600 6800 8200									

X7R

									1					
;	SIZE		05	80			0	508				06	12	
No. o	of Elements			2				4				4	ļ	
	WVDC	16	25	50	100	16	25	50	100	10	16	25	50	100
101 121 151	Cap 100 (pF) 120 150													
181 221 271	180 220 270													
331 391 471	330 390 470													
561 681 821	560 680 820													
102 122 152	1000 1200 1500													
182 222 272	1800 2200 2700													
332 392 472	3300 3900 4700													
562 682 822	5600 6800 8200													
103 123 153	Cap 0.010 (µF) 0.012 0.015													
183 223 273	0.018 0.022 0.027													
333 393 473	0.033 0.039 0.047													
563 683 823	0.056 0.068 0.082													
104 124 154	0.10 0.12 0.15													
-	X7R													<u> </u>

= NP0/COG

Multi-Value Capacitor Array (IPC)

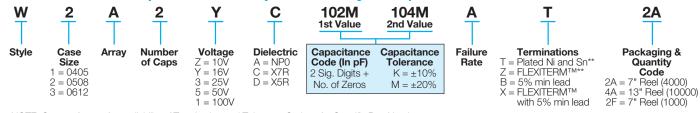
GENERAL DESCRIPTION

A recent addition to the array product range is the Multi-Value Capacitor Array. These devices combine two different capacitance values in standard 'Cap Array' packages and are available with a maximum ratio between the two capacitance values of 100:1. The multi-value array is currently available in the 0405 and 0508 2-element styles and also in the 0612 4-element style.

Whereas to date AVX capacitor arrays have been suited to applications where multiple capacitors of the same value are used, the multi-value array introduces a new flexibility to the range. The multi-value array can replace discrete capacitors of different values and can be used for broadband decoupling applications. The 0508 x 2 element multi-value array would be particularly recommended in this application. Another application is filtering the 900/1800 or 1900MHz noise in mobile phones. The 0405 2-element, low capacitance value NPO, (COG) device would be suited to this application, in view of the space saving requirements of mobile phone manufacturers.

ADVANTAGES OF THE MULTI-VALUE CAPACITOR ARRAYS

Enhanced Performance Due to Reduced Parasitic Inductance

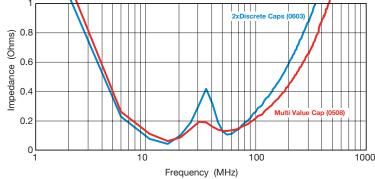

When connected in parallel, not only do discrete capacitors of different values give the desired self-resonance, but an additional unwanted parallel resonance also results. This parallel resonance is induced between each capacitor's self-resonant frequencies and produces a peak in impedance response. For decoupling and bypassing applications this peak will result in a frequency band of reduced decoupling and in filtering applications reduced attenuation.

The multi-value capacitor array, combining capacitors in one unit, virtually eliminates the problematic parallel resonance, by minimizing parasitic inductance between the capacitors, thus enhancing the broadband decoupling/filtering performance of the part.

Reduced ESR

An advantage of connecting two capacitors in parallel is a significant reduction in ESR. However, as stated above, using discrete components brings with it the unwanted side effect of parallel resonance. The multi-value cap array is an excellent alternative as not only does it perform the same function as parallel capacitors but also it reduces the uncertainty of the frequency response.

HOW TO ORDER (Multi-Value Capacitor Array - IPC)

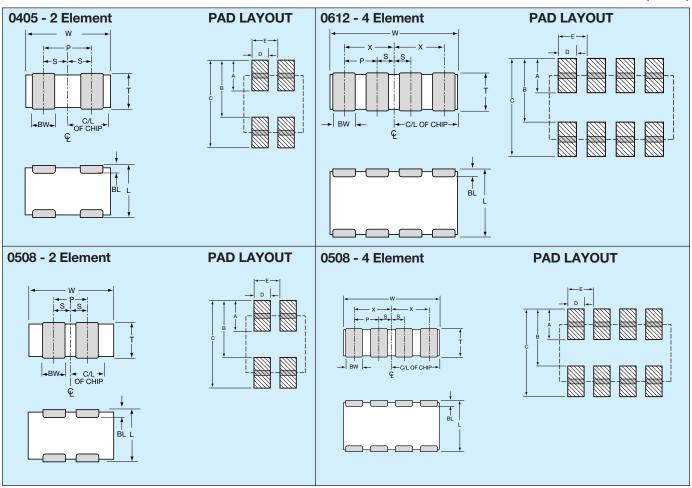

 ${\tt NOTE: Contact \ factory \ for \ availability \ of \ Termination \ and \ Tolerance \ Options \ for \ Specific \ Part \ Numbers.}$

**RoHS compliant

	Cap (M	in/Max)
	NP0	X5R/X7R
0612 4-element	100/471	221/104
0508 2-element	100/471	221/104
0405 2-element	100/101	101/103

- Max. ratio between the two cap values is 1:100.
- The voltage of the higher capacitance value dictates the voltage of the multi-value part.
- Only combinations of values within a specific dielectric range are possible.

IMPEDANCE VS FREQUENCY



PART & PAD LAYOUT DIMENSIONS

millimeters (inches)

PART DIMENSIONS

0405 - 2 Element

L	W	Т	BW	BL	Р	S
1.00 ± 0.15	1.37 ± 0.15	0.66 MAX	0.36 ± 0.10	0.20 ± 0.10	0.64 REF	0.32 ± 0.10
(0.039 ± 0.006)	(0.054 ± 0.006)	(0.026 MAX)	(0.014 ± 0.004)	(0.008 ± 0.004)	(0.025 REF)	(0.013 ± 0.004)

0508 - 2 Element

L	W	T	BW	BL	Р	S
	2.10 ± 0.15 (0.083 ± 0.006)	0.94 MAX (0.037 MAX)	0.43 ± 0.10 (0.017 ± 0.004)	0.33 ± 0.08 (0.013 ± 0.003)	1.00 REF (0.039 REF)	0.50 ± 0.10 (0.020 ± 0.004)

0508 - 4 Element

L	W	Т	BW	BL	Р	X	S
	2.10 ± 0.15	0.94 MAX	0.25 ± 0.06	0.20 ± 0.08 (0.008 ± 0.003)		0.75 ± 0.10	0.00
(0.001 ± 0.000)	(0.000 ± 0.000)	(0.007 101700)	(0.010 ± 0.000)	(0.000 ± 0.000)	(0.020 I ILI)	(0.000 ± 0.004)	(0.010 ± 0.004)

0612 - 4 Element

L	W	Т	BW	BL	Р	X	S
1.60 ± 0.20 (0.063 ± 0.008)	3.20 ± 0.20 (0.126 ± 0.008)	1.35 MAX (0.053 MAX)	0.41 ± 0.10 (0.016 ± 0.004)	0.18 +0.25 0.18 -0.08 (0.007+0.010) -0.003	0.76 REF (0.030 REF)	1.14 ± 0.10 (0.045 ± 0.004)	0.38 ± 0.10 (0.015 ± 0.004)

PAD LAYOUT DIMENSIONS

0405 - 2 Element

	Α	В	С	D	Е
ſ	0.46	0.74	1.20	0.30	0.64
	(0.018)	(0.029)	(0.047)	(0.012)	(0.025)

0508 - 2 Element

Α	В	C	D	Е
0.68	1.32	2.00	0.46	1.00
(0.027)	(0.052)	(0.079)	(0.018)	(0.039)

0508 - 4 Element

Α	В	С	D	E
0.56	1.32	1.88	0.30	0.50
(0.022)	(0.052)	(0.074)	(0.012)	(0.020)

0612 - 4 Element

Α	В	С	D	Е
0.89	1.65	2.54	0.46	0.76
(0.035)	(0.065)	(0.100)	(0.018)	(0.030)

