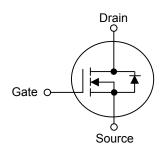


UNISONIC TECHNOLOGIES CO., LTD

UT4414 Preliminary Power MOSFET

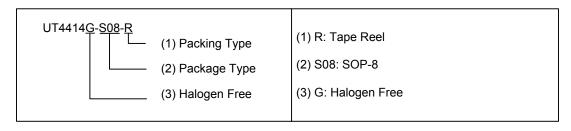
N-CHANNEL ENHANCEMENT MODE FIELD EFFECT TRANSISTOR

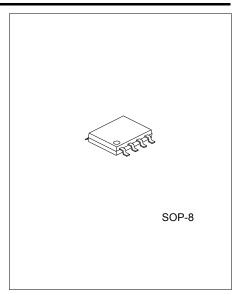
■ DESCRIPTION

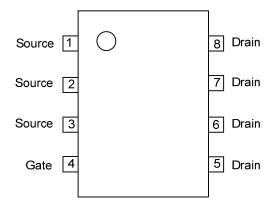

The UTC **UT4414** is an N-channel enhancement mode FET with excellent trench technology to provide customers perfect $R_{DS(ON)}$ and low gate charge. The source leads are separated to allow a Kelvin connection to the source, which may be used to bypass the source inductance.

This device can be applied in a load switch or in PWM applications.

■ FEATURES


- * $V_{DSS} = 30V$
- * I_D=8.5A @V_{GS}=10V
- * $R_{DS(ON)}$ <26m Ω @ V_{GS} =10V
- * $R_{DS(ON)}$ <40m Ω @ V_{GS} =4.5V


■ SYMBOL


ORDERING INFORMATION

Ordering Number	Package	Packing
UT4414G-S08-R	SOP-8	Tape Reel

■ PIN CONFIGURATION

■ ABSOLUTE MAXIMUM RATING (T_A =25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain to Source Voltage		V_{DSS}	30	V
Gate to Source Voltage		V_{GSS}	±20	V
Continuous Drain Current (Note 1)	T _A =25°C	I _D	8.5	Α
	T _A =70°C	I_D	7.1	Α
Pulsed Drain Current (Note 1)		I _{DM}	50	Α
Total Power Dissipation	T _A =25°C	В	3	W
	T _A =70°C	P _D	2.1	W
Junction Temperature		TJ	+150	°C
Storage Temperature	·	T _{STG}	-55 ~ + 150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER		SYMBOL	MIN	TYP	MAX	UNIT
Junction to Ambient (Note 1)	t ≤10s	θ_{JA}		31	40	°C/W
	Steady-State			59	75	°C/W

■ ELECTRICAL CHARACTERISTICS (T_J =25°C, unless otherwise specified)

	(0	. '	. '			
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS				÷	-	
Drain-Source Breakdown Voltage	BV _{DSS}	V_{GS} =0V, I_D =250 μ A	30			V
Drain-Source Leakage Current	I _{DSS}	V _{DS} =24V,V _{GS} =0V		0.004	1	μΑ
Gate-Source Leakage Current	I _{GSS}	V _{DS} =0V ,V _{GS} =±20V			100	nA
ON CHARACTERISTICS				÷	-	
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	1	1.9	3	V
On State Drain Current	I _{D(ON)}	V _{GS} =4.5V, V _{DS} =5V	20			Α
Drain-Source On-State Resistance	В	V _{GS} =10V,I _D =8.5A		20	26	mΩ
	R _{DS(ON)}	V_{GS} =4.5V, I_D =5A		31	40	mΩ
Forward Transconductance	g FS	V_{DS} =5 V , I_{D} =5 A	10	17		S
DYNAMIC PARAMETERS				÷	-	
Input Capacitance	C _{ISS}			680	820	pF
Output Capacitance	Coss	V_{DS} =15V, V_{GS} =0V, f =1MHz		102		pF
Reverse Transfer Capacitance	C _{RSS}			77		pF
Gate Resistance	R_{G}	V_{DS} =0 V , V_{GS} =0 V , f =1 MHz		3	3.6	Ω
SWITCHING PARAMETERS						
Total Gate Charge (10V)	Q_{G}			13.84	17	nC
Total Gate Charge (4.5V)	Q_{G}	\/ -15\/ \/ -10\/ -9.5A		6.74	8.1	nC
Gate-Source Charge	Q_{GS}	V_{DS} =15V, V_{GS} =10V, I_{D} =8.5A		1.84		nC
Gate-Drain Charge	Q_GD			3.32		nC
Turn-ON Delay Time	t _{D(ON)}			4.5	6.5	ns
Turn-ON Rise Time	t _R	V_{DS} =15V, V_{GS} =10V, R_{G} =3 Ω ,		4.2	6.3	ns
Turn-OFF Delay Time	t _{D(OFF)}	R _L =1.8Ω		20.1	30	ns
Turn-OFF Fall Time	t _F			4.9	7.5	ns
SOURCE- DRAIN DIODE RATINGS AND C	HARACTERI	STICS				
Maximum Body-Diode Continuous Current	Is				4.3	Α
Drain-Source Diode Forward Voltage	V_{SD}	I _S =1A, V _{GS} =0V		0.76	1	V
Body Diode Reverse Recovery Time	t _{RR}	I _F =8.5A, dI/dt=100A/μs		17.2	21	ns
Body Diode Reverse Recovery Charge	Q_{RR}	I _F =8.5A, dI/dt=100A/μs		8.6	10	nC
		•				

- Note: 1. The value of θ_{JA} is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any given application depends on the user's specific boar design. The current rating is based on the t ≤ 10s thermal resistance rating.
 - 2. Repetitive Rating : Pulse width limited by T_{J}
 - 3. The θ_{JA} is the sum of the thermal impedance from junction to lead θ_{JL} and lead to ambient.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

