

N-Channel 60 V (D-S) 175 °C MOSFET

PRODUCT SUMMARY			
V _{DS} (V)	r _{DS(on)} (Ω)	I _D (A) ^a	
60	0.022 @ V _{GS} = 10 V	30	
	0.025 @ V _{GS} = 4.5 V	30	

Parameter Gate-Source Voltage		Symbol	Limit	Unit
		V _{GS}	±20	V
Continuous Drain Current (T ₁ = 175°C) ^b	T _C = 25°C	I _D	30	
Continuous Diam Curient (1) = 173 C)	T _C = 100°C	'D	30	
Pulsed Drain Current		I _{DM}	100	А
Continuous Source Current (Diode Conduction)		I _S	34	
Avalanche Current		I _{AR}	34	
Repetitive Avalanche Energy (Duty Cycle ≤ 1%)	L = 0.1 mH	E _{AR}	58	mJ
Maximum Power Dissipation	T _C = 25°C	Ь	75	w
	T _A = 25°C	P _D	1.4 ^b , 2.5 ^c	
Operating Junction and Storage Temperature Range		T _J , T _{sta}	-55 to 175	°C

THERMAL RESISTANCE RATINGS					
Parameter		Symbol	Limit	Unit	
Maximum Junction-to-Ambient	Free Air, FR4 Board Mount	R _{thJA}	60	°C/W	
	Free Air, Vertical Mount		110		
Maximum Junction-to-Case		R _{thJC}	2.0		

Notes:

a. Package limited.

b. Free air, vertical mount.

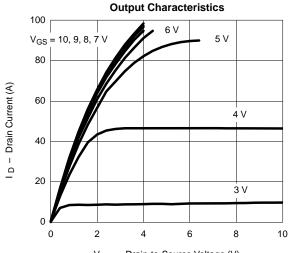
c. Surface mounted on 1" x 1" FR4 Board, $t \le 10$ sec.

For SPICE model information via the Worldwide Web: http://www.vishay.com/www/product/spice.htm

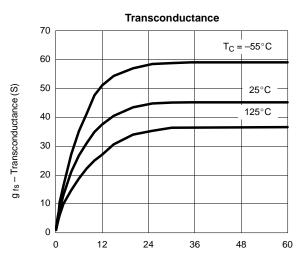
1 / 5 www.freescale.net.cn

N-Channel 60 V (D-S) 175 °C MOSFET

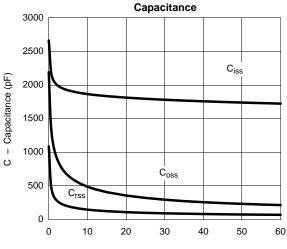
Parameter	Symbol	Test Condition	Min	Typ ^a	Max	Unit	
Static	<u>'</u>		•	•	•		
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V, } I_D = 250 \mu\text{A}$				V	
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1.0	2.0	3.0	1	
Gate-Body Leakage	I _{GSS}	V_{DS} = 0 V, V_{GS} = ± 20 V			±100	nA	
Zero Gate Voltage Drain Current		V _{DS} = 60 V, V _{GS} = 0 V	1		1	†	
	I _{DSS}	$V_{DS} = 60 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 125 ^{\circ}\text{C}$			50	μΑ	
		$V_{DS} = 60 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 175 ^{\circ}\text{C}$	60 V, V _{GS} = 0 V, T _J = 175°C		150	1	
On-State Drain Current ^b	I _{D(on)}	$V_{DS} = 5 \text{ V}, V_{GS} = 10 \text{ V}$	20			А	
Drain-Source On-State Resistance ^b		$V_{GS} = 10 \ V, I_D = 20 \ A$			0.022		
		$V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}, T_J = 125^{\circ}\text{C}$			0.043	1	
	r _{DS(on)}	$V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}, T_J = 175^{\circ}\text{C}$			0.053	Ω	
		$V_{GS} = 4.5 \text{ V}, I_D = 20 \text{ A}$			0.025	1	
Forward Transconductanceb	9 _{fs}	V _{DS} = 15 V, I _D = 20 A				S	
Dynamic	<u>'</u>		•		•		
Input Capacitance	C _{iss}			1800		pF	
Output Capacitance	C _{oss}	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$		350			
Reverse Transfer Capacitance	C _{rss}			100			
Total Gate Charge ^c	Qg			40	60	nC	
Gate-Source Charge ^c	Q _{gs}	$V_{DS} = 30 \text{ V}, \ V_{GS} = 10 \text{ V}, \ I_D = 40 \text{ A}$		9			
Gate-Drain Charge ^c	Q _{gd}			10			
Turn-On Delay Time ^c	t _{d(on)}			10	20	ns	
Rise Time ^c	t _r	$\begin{aligned} &V_{DD} = 30 \text{ V, R}_L = 0.9 \ \Omega \\ &I_D \cong 20 \text{ A, V}_{GEN} = 10 \text{ V, R}_G = 2.5 \ \Omega \end{aligned}$		9	20		
Turn-Off Delay Time ^c	t _{d(off)}			28	50		
Fall Time ^c	t _f			7	15		
Source-Drain Diode Ratings a	nd Characteristic	cs (T _C = 25°C)					
Pulsed Current	I _{SM}				20	А	
Diode Forward Voltage	V _{SD}	$I_F = 20 \text{ A}, V_{GS} = 0 \text{ V}$		1.0	1.5	٧	
Reverse Recovery Time	t _{rr}	I _F = 20 A, di/dt = 100 A/μs		48	100	ns	

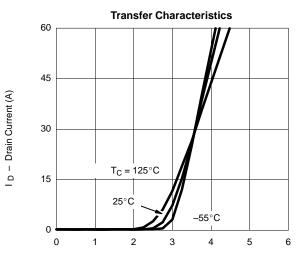

- Notes: a. For design aid only; not subject to production testing. b. Pulse test; pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$. c. Independent of operating temperature.

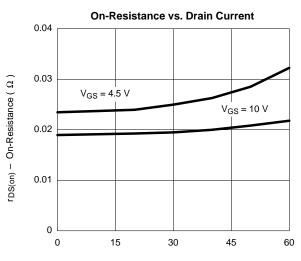
2/5 www.freescale.net.cn

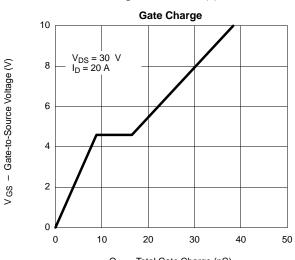


N-Channel 60 V (D-S) 175 °C MOSFET


TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

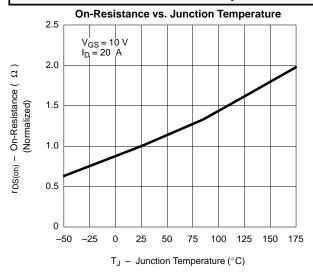

V_{DS} - Drain-to-Source Voltage (V)

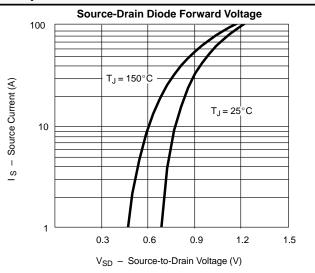

I_D - Drain Current (A)

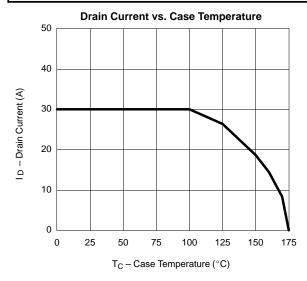

V_{DS} - Drain-to-Source Voltage (V)

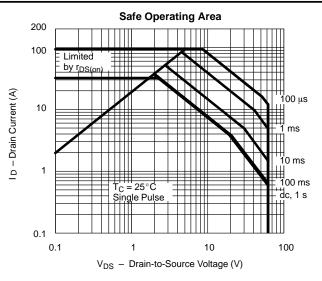
V_{GS} - Gate-to-Source Voltage (V)

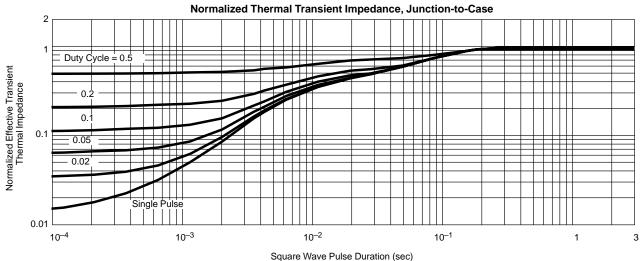
I_D - Drain Current (A)




Q_g - Total Gate Charge (nC)


N-Channel 60 V (D-S) 175 °C MOSFET


TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)



THERMAL RATINGS

4 / 5 www.freescale.net.cn

N-Channel 60 V (D-S) 175 °C MOSFET

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

freestyle Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on it s or their behalf (collectively, "freestyle"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

freestyle makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vi shay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain type s of applications are based on freestyle's knowledge of typical requirements that are often placed on freestyle products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specification s may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify freestyle's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, freestyle products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the freestyle product could result in personal injury or death. Customers using or selling freestyle products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold freestyle and its distributors harmless from and against an y and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vis hay

Material Category Policy

freestyle Intertechnology, Inc. hereby certi fies that all its products that are id entified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some freestyle documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002 /95/EC conform to Directive 2011/65/EU.

5 / 5 www.freescale.net.cn