DUAL LOW NOISE EQUALIZER AMPLIFIER

The KA22211 is a monolithic integrated circuit consisting of a 2-channel pre-amplifier in a 8-pin plastic single in-line package.

FEATURES

- Recommended operating supply voltage range: Vcc = 5V ~ 14V
- Low noise ($V_{NI} = 1.0 \mu V$: Typ)
- · High channel separation
- . Minimum number of external parts required

SCHEMATIC DIAGRAM

ORDERING INFORMATION

Device	Package	Operating Temperature
KA22211	8 SIP	-20°C~+70°C

BLOCK DIAGRAM

Fig. 1

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Characteristic	Symbol	Value	Unit
Supply Voltage Power Dissipation Operating Temperature Storage Temperature	V _{CC}	18	V
	P _D	200	mW
	T _{OPR}	- 20 ~ + 70	°C
	T _{STG}	- 40 ~ + 125	°C

ELECTRICAL CHARACTERISTICS

(Ta = 25°C, V_{CC} = 9V, R_L = 10K Ω , R_G = 600 Ω , f = 1KHz, NAB, unless otherwise specified)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Quiescent Circuit Current	Icca	V ₁ = 0	 -	4.0	6.0	mA
Open Loop Voltage Gain	G _{vo}		65	80		dB
Closed Loop Voltage Gain	G _{vc}	V _o = 0.5V	33	35	37	dB
Output Voltage	Vo	THD = 1%	1.1	1.3		v
Total Harmonic Distortion	THD	V _o = 0.5V		0.1	0.3	%
Input Resistance	R _i		70	100	-17	ΚΩ
Equivalent Input Noise Voltage	VNI	$R_G = 2.2K\Omega$ BW (-3dB) = 15Hz ~ 30KHz		1.0	2.0	μV
Cross Talk	CT	$R_G = 2.2K\Omega$	50	65		dB

APPLICATION INFORMATION

External Components

C₂ (C₉): Input coupling capacitor

These components are concerned with the output noise and operation starting time, and its capacitance is adequate for $10\mu F$.

As C_2 (C₉) below $4.7\mu F$ extends the operation starting time, a capacitance of over $4.7\mu F$ is recommended.

C₃ (C₈): Negative feedback capacitor

These components decide the low cut-off frequency, which is determined as follows:

$$C_3$$
 (C_8) = $\frac{1}{2\pi f_L \cdot R_2 (R_7)}$ where, f_L : low cut-off frequency.

A large C_3 (C_8) makes the operation starting time of an amplifier late. It's capacitance is adequate for $47\mu F$.

C₄, R₃, R₂ (C₇, R₄, R₅): Equalizer network

This components decide the frequency response of an equalizer amplifier. The time constant of standard NAB characteristic is as follows:

Tape Speed Time Constant	9.5cm/sec	4.75cm/sec		
C ₄ (R ₂ + R ₃)	3,180μsec	1,590μsec		
C ₄ , R ₂	90μsec	120µsec		

C₁₁ Filter capacitor of the power line

This should be located as close to the supply voltage pin (Pin 4) as possible. The recommended value is 47μ F:

C1 (C10): Protection capacitor

These components protect against wave damage is strong electric fields and engine noise damage and block oscillation at high amplifying operation.

C₅ (C₆): Output coupling capacitor

The recommended value is 10μ F.

