

PN Junction Silicon Photodiode Type OP900SL

Features

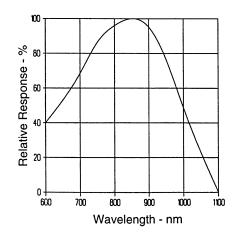
- Narrow receiving angle
- Enhanced temperature range
- Ideal for direct mounting in PC boards
- Fast switching speed
- Mechanically and spectrally matched to the OP123 series emitters
- · Linear response vs. irradiance

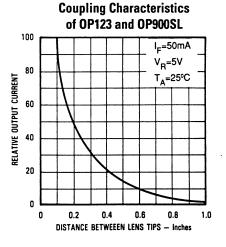
Description

The OP900SL consists of a PN junction silicon photodiode mounted in a miniature, glass lensed, hermetically sealed "Pill" package. The lensing effect allows an acceptance half angle of 18° measured from the optical axis to the half power point.

Replaces

OP900 series

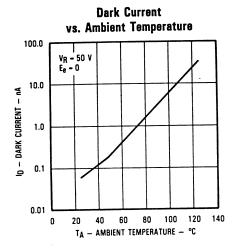

Absolute Maximum Ratings (T_A = 25° C unless otherwise noted)

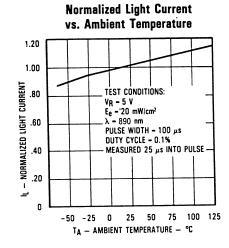

Reverse Voltage	100 V
Storage Temperature Range	-65° C to +150° C
Operating Temperature Range	-65° C to +125° C
Soldering Temperature (5 sec. with soldering iron)	260° C ⁽¹⁾
Power Dissipation	50 mW ⁽²⁾
Notes:	

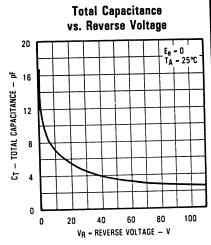
- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
- (2) Derate linearly 0.5 mW/° C above 25° C. (3) Junction temperature maintained at 25° C.
- (4) Light source is an unfiltered tungsten bulb operating at CT = 2870 K or equivalent infrared

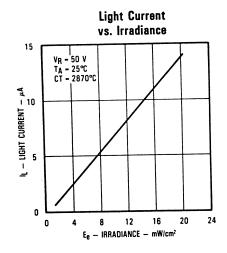
Typical Performance Curves

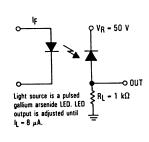
Typical Spectral Response

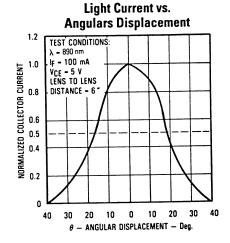



Type OP900SL


Electrical Characteristics (T_A = 25° C unless otherwise noted)


SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
	Light Current	8.0	14.0		μА	$V_R = 10 \text{ V, E}_e = 20 \text{ mW/cm}^{2(3)(4)}$
	Dark Current	-		10	nA	$V_R = 10 \text{ V, } E_e = 0^{(3)}$
טי	Reverse Voltage Breakdown	100	150		V	I _R = 100 μA
tr	Rise Time		100 100		ns ns	V_R = 50 V, I_L = 8 μA R_L = 1 kΩ, See Test Circuit


Typical Performance Curves



Switching Time

Test Circuit

