

APT11GF120BRD1

1200V 22A

ററ

TO-24

Fast IGBT & FRED

The Fast IGBT[™] is a new generation of high voltage power IGBTs. Using Non-Punch Through Technology the Fast IGBT[™] combined with an APT freewheeling ultraFast Recovery Epitaxial Diode (FRED) offers superior ruggedness and fast switching speed.

- Low Forward Voltage Drop
- High Freq. Switching to 20KHz
 Ultra Low Leakage Current
- Low Tail Current
- RBSOA and SCSOA Rated
- Ultrafast Soft Recovery Antiparallel Diode

MAXIMUM RATINGS (IGBT)

All Ratings: $T_C = 25^{\circ}C$ unless otherwise specified.

Symbol	Parameter	APT11GF120BRD1	UNIT
V _{CES}	Collector-Emitter Voltage	1200	
V _{CGR}	Collector-Gate Voltage ($R_{GE} = 20K\Omega$)	1200	Volte
V _{GE}	Gate-Emitter Voltage	±20	VOIIS
I _{C1}	Continuous Collector Current @ T _C = 25°C	22	
I _{C2}	Continuous Collector Current @ T _C = 110°C	11	Amos
I _{CM1}	Pulsed Collector Current ⁽¹⁾ @ $T_C = 25^{\circ}C$	44	Amps
I _{CM2}	Pulsed Collector Current (1) @ $T_C = 110^{\circ}C$	22	
P _D	Total Power Dissipation	125	Watts
T _J ,T _{STG}	Operating and Storage Junction Temperature Range	-55 to 150	•
TL	Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.	300	

STATIC ELECTRICAL CHARACTERISTICS (IGBT)

Symbol	Characteristic / Test Conditions	MIN	TYP	MAX	UNIT
BV _{CES}	Collector-Emitter Breakdown Voltage ($V_{GE} = 0V, I_C = 0.6mA$)	1200			
V _{GE} (TH)	Gate Threshold Voltage ($V_{CE} = V_{GE}$, $I_C = 350\mu$ A, $T_j = 25^{\circ}$ C)	4.5	5.5	6.5	- Volts - mA
V _{CE} (ON)	Collector-Emitter On Voltage ($V_{GE} = 15V$, $I_C = I_{C2}$, $T_j = 25^{\circ}C$)		2.5	3.0	
	Collector-Emitter On Voltage ($V_{GE} = 15V$, $I_C = I_{C2}$, $T_j = 125^{\circ}C$)		3.1	3.7	
I _{CES}	Collector Cut-off Current ($V_{CE} = V_{CES}, V_{GE} = 0V, T_j = 25^{\circ}C$)			0.6	
	Collector Cut-off Current ($V_{CE} = V_{CES}, V_{GE} = 0V, T_j = 125^{\circ}C$)			3.0	
I _{GES}	Gate-Emitter Leakage Current ($V_{GE} = \pm 20V$, $V_{CE} = 0V$)			±100	nA

CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

APT Website - http://www.advancedpower.com

DYNAMIC CHARACTERISTICS (IGBT)

APT11GF120BRD1

Symbol	Characteristic	Test Conditions	MIN	ТҮР	МАХ	UNIT
C _{ies}	Input Capacitance	Capacitance		600	800	
C _{oes}	Output Capacitance	$V_{GE} = 0V$ $V_{OE} = 25V$		90	130	pF
C _{res}	Reverse Transfer Capacitance	f = 1 MHz		38	65	
Qg	Total Gate Charge ^②	Gate Charge		60		
Q _{ge}	Gate-Emitter Charge	$V_{GE} = 15V$		8		nC
Q _{gc}	Gate-Collector ("Miller") Charge	$I_{\rm C} = I_{\rm C2}$		38		
t _d (on)	Turn-on Delay Time	Resistive Switching (25°C)		10		
t _r	Rise Time	$V_{GE} = 15V$		50		
t _d (off)	Turn-off Delay Time	$V_{CC} = 0.8V_{CES}$		55		ns
t _f	Fall Time	$R_{G} = 10\Omega$		110		
t _d (on)	Turn-on Delay Time			13		
t _r	Rise Time	Inductive Switching (125°C)		20		
t _d (off)	Turn-off Delay Time	$V_{CLAMP}(Peak) = 0.66V_{CES}$		125		ns
t _f	Fall Time	$V_{GE} = 15V$		90		
E _{on}	Turn-on Switching Energy $^{\textcircled{3}}$	$R_{G} = 10\Omega$.5		
E _{off}	Turn-off Switching Energy	T _J = +125°C		1.0		mJ
E _{ts}	Total Switching Losses ³	- C.		1.5		
t _d (on)	Turn-on Delay Time	Inductive Switching (25°C)		13		
t _r	Rise Time	$V_{CLAMP}(Peak) = 0.66V_{CES}$		20		
t _d (off)	Turn-off Delay Time	$V_{GE} = 15V$		110		ns
t _f	Fall Time	$R_{G} = 10\Omega$		90		
E _{ts}	Total Switching Losses ³	T _J = +25°C		1.0		mJ
gfe	Forward Transconductance	$V_{CE} = 20V, I_{C} = I_{C2}$	4.7			S

THERMAL AND MECHANICAL CHARACTERISTICS (IGBT and FRED)

Symbol	Characteristic	MIN	ТҮР	MAX	UNIT
R_{\ThetaJC}	Junction to Case (IGBT)			1.00	°C/W
	Junction to Case (FRED)			2.0	
R_{\ThetaJA}	Junction to Ambient			40	
W _T	Package Weight		0.22		oz
			6.1		gm
Torque	Mounting Torque using a 6-32 or 3mm Binding Head Machine Screw			10	lb∙in
				1.1	N∙m

1 Repetitive Rating: Pulse width limited by maximum junction temperature.

② See MIL-STD-750 Method 3471

⁽³⁾ Switching losses include the FRED and IGBT.
 APT Reserves the right to change, without notice, the specifications and information contained herein.

ULTRAFAST SOFT RECOVERY PARALLEL DIODE

MAXIMUM RATINGS (FRED)

All Ratings: $T_C = 25^{\circ}C$ unless otherwise specified.

Symbol	Characteristic / Test Conditions	APT11GF120BRD1	UNIT
V _R	Maximum D.C. Reverse Voltage		
V _{RRM}	Maximum Peak Repetitive Reverse Voltage	1200	Volts
V _{RWM}	Maximum Working Peak Reverse Voltage		
I _F (AV)	Maximum Average Forward Current ($T_c = 85^{\circ}C$, Duty Cycle = 0.5)	15	
I _F (RMS)	RMS Forward Current	29	Amps
I _{FSM}	Non-Repetitive Forward Surge Current ($T_J = 45^{\circ}C$, 8.3ms)	110	

STATIC ELECTRICAL CHARACTERISTICS (FRED)

Symbol	Characteristic / Test Conditions		MIN	ТҮР	МАХ	UNIT
V _F	Maximum Forward Voltage $I_{F} = 15A$ $I_{F} = 30A$ $I_{F} = 15A, T_{J} = 150^{\circ}C$	I _F = 15A			2.5	Volts
		I _F = 30A		2.5		
				2.2		
I _{RM}	Maximum Reverse Leakage Current	$V_R = V_R Rated$			250	
	Maximum Reverse Leakage Current $V_R = V_R Rated, T_J = 125^{\circ}C$			500	μΛ	
L _S	Series Inductance (Lead to Lead 5mm from	m Base)		10		nH

DYNAMIC CHARACTERISTICS (FRED)

Symbol	Characteristic		MIN	ТҮР	MAX	UNIT
t _{rr1}	Reverse Recovery Time, $I_F = 1.0A$, $di_F/dt = -15A/\mu s$, $V_R = 30$	V, T _J = 25°C		48	TBD	
t _{rr2}	Reverse Recovery Time	$T_J = 25^{\circ}C$		60		
t _{rr3}	$I_{F} = 15A, di_{F}/dt = -100A/\mu s, V_{R} = 650V$	$T_J = 100^{\circ}C$		132		ns
t _{fr1}	Forward Recovery Time	$T_J = 25^{\circ}C$		192		
t _{fr2}	$I_{\rm F} = 15$ A, di_{\rm F}/dt = 100A/µs, V_{\rm R} = 650V	$T_J = 100^{\circ}C$		211		
I _{RRM1}	Reverse Recovery Current	$T_J = 25^{\circ}C$		4.0	TBD	Amps
I _{RRM2}	$I_{F} = 15A, di_{F}/dt = -100A/\mu s, V_{R} = 650V$	$T_J = 100^{\circ}C$		7	TBD	
Q _{rr1}	Recovery Charge	$T_J = 25^{\circ}C$		126		nC
Q _{rr2}	$I_{F} = 15A, di_{F}/dt = -100A/\mu s, V_{R} = 650V$	$T_J = 100^{\circ}C$		523		
V _{fr1}	Forward Recovery Voltage	$T_J = 25^{\circ}C$		12		Volte
V _{fr2}	$I_{\rm F} = 15$ A, di_{\rm F}/dt = 100A/µs, V_{\rm R} = 650V	$T_J = 100^{\circ}C$		18		VOIIS
diM/dt	Rate of Fall of Recovery Current	$T_J = 25^{\circ}C$		166		Δ/με
uivi/ut	I _F = 15A, di _F /dt = -100A/μs, V _R =650V	$T_J = 100^{\circ}C$		81		

Figure 25, Diode Reverse Recovery Test Circuit and Waveforms

TO-247 Package Outline