MOS FET Relays G3VM-S5

Analog-Switching MOS FET Relay in 200-V Load Voltage Series, SOP Package.

- Ideal replacement for the dial-pulse relay or hook relay for modems and facsimile machines.
- Ideal for application to the line interface blocks of PBX and telephone exchange systems.
- Can be applied to hybrid IC circuits and card-type modems conforming to PCMCIA standards.
- Peak load voltage of 200 V.
- Approved standards: UL1577 (File No. E80555)
- RoHS Compliant.

■ Application Examples

- PBX subscriber interfaces
- Multi-functional telephones
- Card-type modems and fax modems
- Built-in modems in personal computers

Note: The actual product is marked differently from the image shown here.

■ List of Models

Contact form	Terminals	Load voltage (peak value)	Model	Number per stick	Number per tape
SPST-NO			G3VM-S5	100	
	erminals		G3VM-S5(TR)		2,500

■ Dimensions

Note: All units are in millimeters unless otherwise indicated.

G3VM-S5

Note: The actual product is marked differently from the image shown here.

■ Terminal Arrangement/Internal Connections (Top View)

G3VM-S5

Actual Mounting Pad Dimensions (Recommended Value, Top View)

G3VM-S5

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rating	Unit	Measurement conditions
Input	LED forward current	I _F	50	mA	
	Repetitive peak LED forward current	I _{FP}	1	А	100 μs pulses, 100 pps
	LED forward current reduction rate	Δ I _F /°C	-0.5	mA/°C	$T_a \ge 25^{\circ}C$
	LED reverse voltage	V_R	5	٧	
	Connection temperature	T _j	125	°C	
Output	Load voltage (AC peak/DC)	V_{OFF}	200	٧	
	Continuous load current	Io	150	mA	
	ON current reduction rate	Δ I _{ON} /°C	-1.5	mA/°C	$T_a \ge 25^{\circ}C$
	Connection temperature	T _j	125	°C	
	ic strength between input and See note 1.)	V _{I-O}	1,500	V _{rms}	AC for 1 min
Operating temperature		Ta	-40 to +85	°C	With no icing or condensation
Storage temperature		T _{stg}	-55 to +100	°C	With no icing or condensation
Soldering temperature (10 s)			260	°C	10 s

Note:

 The dielectric strength between the input and output was checked by applying voltage between all pins as a group on the LED side and all pins as a group on the light-receiving side.

■ Electrical Characteristics (Ta = 25°C)

Item		Symbol	Mini- mum	Typical	Maxi- mum	Unit	Measurement conditions	
Input	LED forward voltage	V _F	1.0	1.15	1.3	V	I _F = 10 mA	
	Reverse current	I _R			10	μΑ	V _R = 5 V	
	Capacity between terminals	C _T		30		pF	V = 0, f = 1 MHz	
	Trigger LED forward current	I _{FT}		1	3	mA	I _O = 150 mA	
·	Maximum resistance with output ON	R _{ON}		5	8	Ω	I _F = 5 mA, I _O = 500 mA	
	Current leakage when the relay is open	I _{LEAK}		0.00045	1.0	μΑ	V _{OFF} = 200 V	
	Capacity between terminals	C _{OFF}		100		pF	V = 0, f = 1MHz	
Capacity between I/O terminals		C _{I-O}		0.8		pF	f = 1 MHz, V _s = 0 V	
Insulation resistance		R _{I-O}	1,000			ΜΩ	$\begin{aligned} &V_{\text{I-O}} = 500 \text{ VDC}, \\ &R_{\text{oH}} \leq 60\% \end{aligned}$	
Turn-ON time		t _{ON}		0.6	1.5	ms	$I_F = 5 \text{ mA}, R_L = 200 \Omega, V_{DD} = 20 \text{ V (See note 2.)}$	
Turn-OFF time		t _{OFF}		0.1	1.0	ms		

Note: 2. Turn-ON and Turn-OFF Times

■ Recommended Operating Conditions

Use the G3VM under the following conditions so that the Relay will operate properly.

Item	Symbol	Minimum	Typical	Maximum	Unit
Load voltage (AC peak/DC)	V_{DD}		150	200	V
Operating LED forward current	I _F	5	7.5	25	mA
Continuous load current (AC peak/DC)	Io			120	mA
Operating temperature	T _a	- 20		65	°C

■ Engineering Data

LED forward current vs. Ambient temperature

Continuous load current vs. Ambient temperature

LED forward current vs. LED forward voltage

(mA)

ED forward current

LED forward voltage VF (V)

Continuous load current vs. On-state voltage

On-state resistance vs. Ambient temperature

Trigger LED forward current vs. Ambient temperature

Turn ON, Turn OFF time vs. LED forward current

Turn ON, Turn OFF time vs. Ambient temperature

Current leakage vs. Ambient temperature

All sales are subject to Omron Electronic Components LLC standard terms and conditions of sale, which can be found at http://www.components.omron.com/components/web/webfiles.nsf/sales_terms.html

Specifications subject to change without notice

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.

OMRON **OMRON ELECTRONIC**

COMPONENTS LLC 55 E. Commerce Drive, Suite B Schaumburg, IL 60173

847-882-2288

Cat. No. X302-E-1

12/10

OMRON ON-LINE

Global - http://www.omron.com USA - http://www.components.omron.com

Printed in USA

MOS FET Relays **G3VM-S5**