Small Signal MOSFET

30 V/-20 V, +0.25/-0.88 A, Complementary, SC-88

Features

- Leading 20 V Trench for Low R_{DS(on)} Performance
- ESD Protected Gate
- SC-88 Package for Small Footprint (2 x 2 mm)

Applications

- DC-DC Conversion
- Load/Power Management
- Load Switch
- Cell Phones, MP3s, Digital Cameras, PDAs
- This is a Pb-Free Device

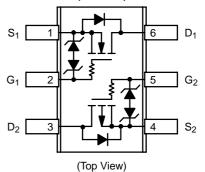
MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted)

Par	Symbol	Value	Unit			
Drain-to-Source Volt	N-Ch	V_{DSS}	30	V		
	P-Ch		-20			
Gate-to-Source Volta	N-Ch	V_{GS}	±20	V		
		P-Ch		±12		
N-Channel Continuous Drain	Steady	T _A = 25°C	I _D	0.25	Α	
Current (Note 1)	State	T _A = 85°C		0.18		
P-Channel Continuous Drain	Steady	T _A = 25°C		-0.88		
Current (Note 1)	State	T _A = 85°C		-0.63		
Power Dissipation (Note 1)	Steady State	T _A = 25°C	P _D	0.27	W	
Pulsed Drain	to 40	I _{DM}	0.5	Α		
Current	P-Ch	tp = 10 μs		-3.0		
Operating Junction a	T _J , T _{stg}	–55 to 150	°C			
Source Current (Body	N-Ch	IS	0.25	Α		
	P-Ch		-0.48			
Lead Temperature for (1/8" from case for 10	T _L	260	°C			

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	460	°C/W

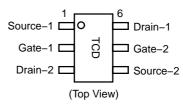
Surface mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).



ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX
N-Ch	1.0 Ω @ 4.5 V	0.25 A
30 V	1.5 mΩ @ 2.5 V	0.23 A
P-Ch	215 mΩ @ –4.5 V	-0.88 A
–20 V	345 mΩ @ –2.5 V	0.50 A



SC-88 (SOT-363) CASE 419B STYLE 26

MARKING DIAGRAM & PIN ASSIGNMENT

TC = Specific Device Code
D = Date Code

ORDERING INFORMATION

Device	Package	Shipping†		
NTJD4158CT1G	SC-88 (Pb-Free)	3000 Tape & Reel		

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	N/P	Test Condition		Min	Тур 🖔	Max⊲	dunite 4
OFF CHARACTERISTICS (Note 3)								
Drain-to-Source	V _{(BR)DSS}	N	\/ 0\/	I _D = 250 μA	30			V
Breakdown Voltage	(=: 1,)200	Р	$V_{GS} = 0 V$	$I_D = -250 \mu\text{A}$	-20		İ	
Drain-to-Source Breakdown	V _{(BR)DSS} /	N		•		33		mV/
Voltage Temperature Coefficient	ÌΤ΄	Р				-9.0		°C
Zero Gate Voltage Drain Current	I _{DSS}	N	V _{GS} = 0 V, V _{DS} = 30 V	T 0500			1.0	μΑ
		Р	$V_{GS} = 0 \text{ V}, V_{DS} = -16 \text{ V}$	$T_J = 25^{\circ}C$			1.0	
		N	V _{GS} = 0 V, V _{DS} = 30 V	T 40500		0.5		1
		Р	V _{GS} = 0 V, V _{DS} = -16 V	$T_{\rm J} = 125^{\circ}{\rm C}$		0.5		1
Gate-to-Source Leakage Current	I _{GSS}	N	$V_{DS} = 0 \text{ V}, V_{GS} = 0$	10 V			1.0	μΑ
		Р	V _{DS} = 0 V, V _{GS} = -				1.0	
ON CHARACTERISTICS (Note 2)					•		•	
Gate Threshold Voltage	V _{GS(TH)}	N		I _D = 100 μA	0.8	1.2	1.5	V
	03(111)	P	$V_{GS} = V_{DS}$	$I_D = -250 \mu\text{A}$	-0.45			1
Negative Gate Threshold	V _{GS(TH)} /	N		.D		3.2		mV/
Temperature Coefficient	TJ	Р				-2.7		°C
Drain-to-Source On Resistance	R _{DS(on)}	N	$V_{GS} = 4.5 \text{ V}, I_D = 10$	0 mA	 	1.0	1.5	Ω
	23(011)	P	$V_{GS} = -4.5 \text{ V}, I_D = -4.5 \text{ V}$		1	0.215	0.260	
		N	$V_{GS} = -4.5 \text{ V}, I_D = -0.66 \text{ A}$ $V_{GS} = 2.5 \text{ V}, I_D = 10 \text{ mA}$		<u> </u>	1.5	2.5	
		P	$V_{GS} = -2.5 \text{ V}, I_D = -4.5 \text{ V}$		 	0.345	0.500	
Forward Transconductance	9 _{FS}	N	$V_{DS} = 3.0 \text{ V}, I_D = 10$		 	0.08		S
	313	P	_	$V_{DS} = -10 \text{ V}, I_D = -0.88 \text{ A}$		3.0		
CHARGES, CAPACITANCES AND	GATE RESIS					0.0		<u> </u>
Input Capacitance	C _{ISS}	N		V _{DS} = 5.0 V	I	20	33	pF
mpat Capacitanice	OISS	P		$V_{DS} = 3.0 \text{ V}$ $V_{DS} = -20 \text{ V}$		155	225	P'
Output Capacitance	C _{OSS}	N		$V_{DS} = -20 \text{ V}$ $V_{DS} = 5.0 \text{ V}$		19	32	ł
Output Capacitance	Coss	P	$f = 1 MHz, V_{GS} = 0 V$	$V_{DS} = 3.0 \text{ V}$ $V_{DS} = -20 \text{ V}$		25	40	
Reverse Transfer Capacitance	C	N		$V_{DS} = -20 \text{ V}$ $V_{DS} = 5.0 \text{ V}$		7.25	12	
Neverse Transfer Capacitance			18	30				
Total Gate Charge	0	N	V - 5 0 V V - 24 V	$V_{DS} = -20 \text{ V}$		0.9	1.5	nC
Total Gate Charge	$Q_{G(TOT)}$	P	$V_{GS} = 5.0 \text{ V}, V_{DS} = 24 \text{ V},$ $V_{GS} = -4.5 \text{ V}, V_{DS} = -10 \text{ V},$			2.2	3.5	IIC
Threshold Gate Charge	0	N	$V_{GS} = -4.5 \text{ V}, V_{DS} = -10 \text{ V},$ $V_{GS} = 5.0 \text{ V}, V_{DS} = 24 \text{ V},$			0.2	3.3	
Threshold Gate Charge	Q _{G(TH)}	P						
Cata to Source Charge	0	N	$V_{GS} = -4.5 \text{ V}, V_{DS} = -10 \text{ V},$ $V_{GS} = 5.0 \text{ V}, V_{DS} = 24 \text{ V},$			0.2		
Gate-to-Source Charge	Q_{GS}	P	$V_{GS} = 5.0 \text{ V}, V_{DS} = 24 \text{ V},$ $V_{GS} = -4.5 \text{ V}, V_{DS} = -10 \text{ V},$			0.5		
Cata to Prain Charge	0							
Gate-to-Drain Charge	Q_{GD}	N P		_{SS} = 5.0 V, V _{DS} = 24 V, I _D = 0.1 A = -4.5 V, V _{DS} = -10 V, I _D = -0.88 A		0.2		
SWITCHING CHARACTERISTICS	Note 2\	「	$v_{GS} = -4.5 \text{ v}, v_{DS} = -10 \text{ v},$	1D = -0.00 H	<u> </u>	0.65	<u> </u>	
SWITCHING CHARACTERISTICS (· · ·	N.			r	1 4-	r	ne l
Turn-On Delay Time	t _{d(ON)}	N	,, ,=	5 0 1 /		15		ns
Rise Time	t _r	-	$V_{GS} = 4.5 \text{ V}, V_{DD} = 3.50 \text{ m/s}$			66		
Turn-Off Delay Time	t _{d(OFF)}	-	$I_D = 250 \text{ mA}, R_G =$	20.73		56		
Fall Time	t _f					78		
Turn–On Delay Time	t _{d(ON)}	Р				5.8		
Rise Time	t _r	-	$V_{GS} = -4.5 \text{ V}, V_{DD} = -10 \text{ V},$ $I_{D} = -0.5 \text{ A}, R_{G} = 20 \Omega$			6.5		
Turn-Off Delay Time	t _{d(OFF)}	_				13.5		
Fall Time	t _f				<u> </u>	3.5	<u> </u>	
DRAIN-SOURCE DIODE CHARAC				_	_		_	
Forward Diode Voltage	$V_{00} = 0 \ V_{11} = 25^{\circ}C$		$I_S = 10 \text{ mA}$		0.65	0.7	V	
		Р	VGS = 0 V, 1J = 20 0	$I_S = -0.48 \text{ A}$		-0.8	-1.2	
		N	V _{GS} = 0 V, T _J = 125°C	$I_S = 10 \text{ mA}$		0.45		
		Р		$I_S = -0.48 \text{ A}$		-0.66		
Reverse Recovery Time	t _{RR}	N	$V_{GS} = 0 \text{ V}, d_{IS}/d_t = 8.0 \text{ A/}\mu\text{s}$	I _S = 10 mA		12.4		ns
	•	Р	$V_{GS} = 0 \text{ V}, d_{IS}/d_t = 100 \text{ A/}\mu\text{s}$	$I_S = -0.48 \text{ mA}$		TBD		1 1

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

TYPICAL N-CHANNEL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

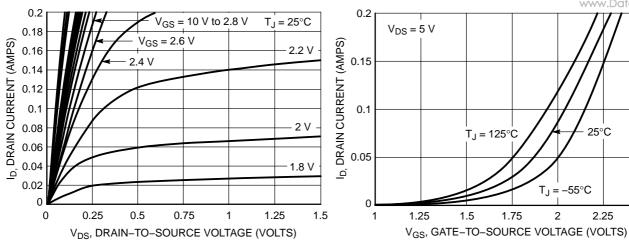


Figure 1. On-Region Characteristics

www.DataSheet4U.com

25°C

2.25

2.5

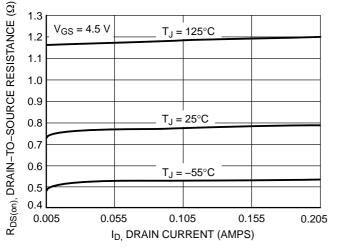


Figure 3. On-Resistance vs. Drain Current and **Temperature**

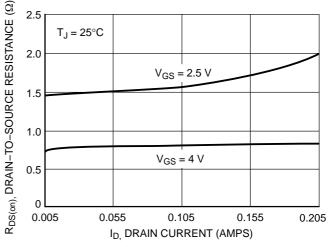


Figure 4. On-Resistance vs. Drain Current and **Gate Voltage**

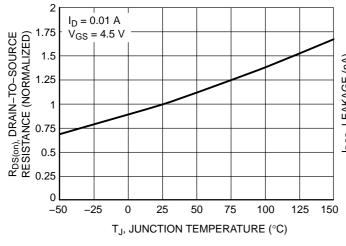


Figure 5. On-Resistance Variation with **Temperature**

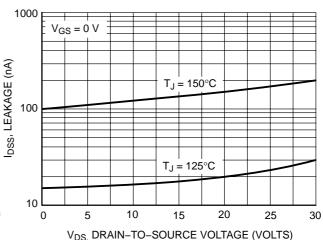
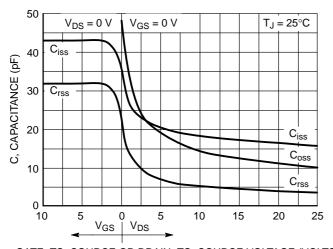



Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL N-CHANNEL PERFORMANCE CURVES ($T_J = 25$ °C unless otherwise noted)

www.DataSheet4U.com

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)

Figure 7. Capacitance Variation

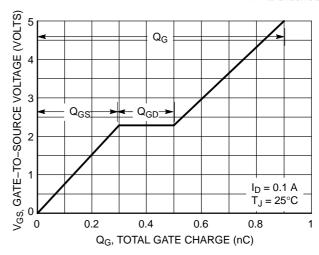


Figure 8. Gate-to-Source Voltage vs. Total Gate Charge

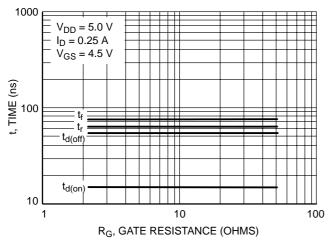


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

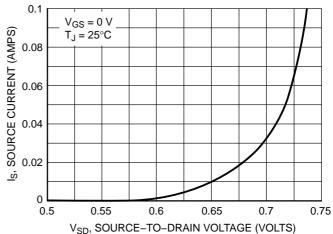


Figure 10. Diode Forward Voltage vs. Current

TYPICAL P-CHANNEL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

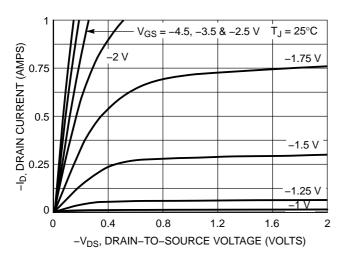


Figure 1. On–Region Characteristics

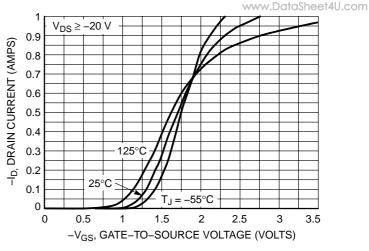


Figure 2. Transfer Characteristics

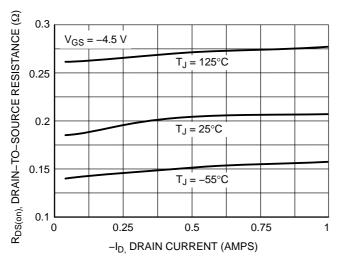


Figure 3. On–Resistance vs. Drain Current and Temperature

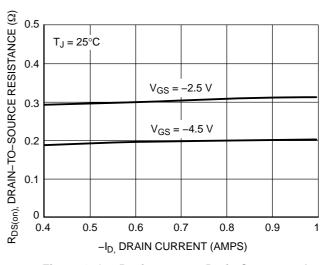


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

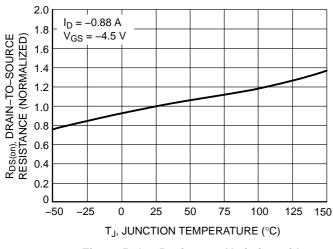


Figure 5. On–Resistance Variation with Temperature

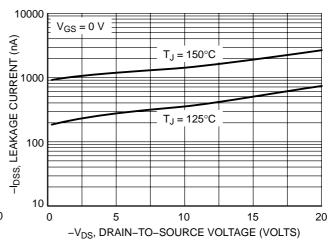
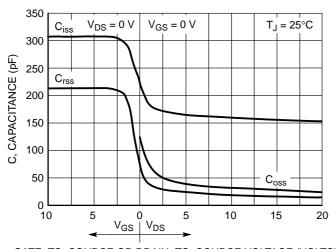



Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL P-CHANNEL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

www.DataSheet4U.com

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)

Figure 7. Capacitance Variation

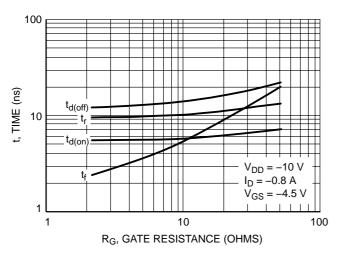


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

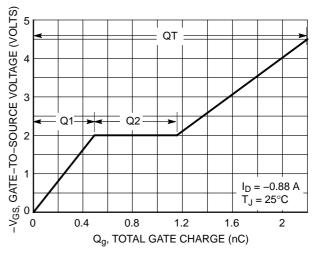


Figure 8. Gate-to-Source Voltage vs. Total Gate Charge

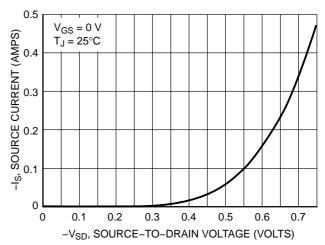
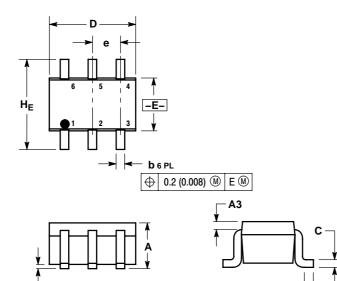



Figure 10. Diode Forward Voltage vs. Current

PACKAGE DIMENSIONS

www.DataSheet4U.com

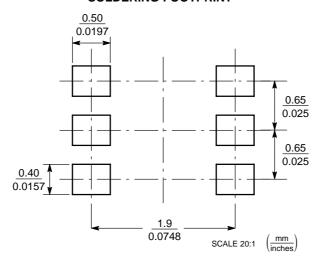
SC-88 (SOT-363) CASE 419B-02 ISSUE V

NOTES:

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: INCH.


 3. 419B-01 OBSOLETE, NEW STANDARD 419B-02.

	MIL	LIMETE	ERS	INCHES				
DIM	MIN	NOM	MAX	MIN	NOM	MAX		
Α	0.80	0.95	1.10	0.031	0.037	0.043		
A1	0.00	0.05	0.10	0.000	0.002	0.004		
A3		0.20 RE	F	0.008 REF				
b	0.10	0.21	0.30	0.004	0.008	0.012		
С	0.10	0.14	0.25	0.004	0.005	0.010		
D	1.80	2.00	2.20	0.070	0.078	0.086		
Е	1.15	1.25	1.35	0.045	0.049	0.053		
е	0.65 BSC			0.026 BSC				
L	0.10	0.20	0.30	0.004	0.008	0.012		
HE	2.00	2.10	2.20	0.078	0.082	0.086		

- STYLE 26: PIN 1. SOURCE 1 2. GATE 1 3. DRAIN 2 4. SOURCE 2 5. GATE 2

 - 6. DRAIN 1

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

www.DataSheet4U.com

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.

