MAAM-009563

RF Driver Amplifier
250 - 3000 MHz
Rev. V1

Features

- OIP3: 47 dBm
- Broadband Operation
- High Efficiency
- Class 2 ESD Rating
- Lead-Free SOIC-8EP Package
- Halogen-Free "Green" Mold Compound
- RoHS* Compliant and 260°C Reflow Compatible

Description

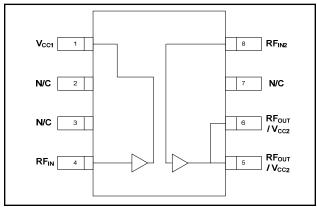
The MAAM-009563 RF driver amplifier is a two stage GaAs MMIC which exhibits exceptional linearity performance as well as featuring high gain in a lead-free SOIC-8EP surface mount plastic package.

The MAAM-009563 is fabricated using a GaAs HBT process to realize low current and high power functionality. The process features full passivation for increased performance and reliability.

The MAAM-009563 has been designed to be a functional driver amplifier from 250 to 3000 MHz. This broad operation is achieved using external matching components as shown in the PCB layout. Component values are selected to center the 200 MHz instantaneous bandwidth within the overall frequency range.

Ordering Information 1,2

Part Number	Package
MAAM-009563-000000	Bulk
MAAM-009563-TR3000	3000 piece reel
MAAM-009563-001SMB	Sample Board


- 1. Reference Application Note M513 for reel size information.
- 2. Sample board includes 5 loose parts.

Absolute Maximum Ratings 3,4

_		
Parameter	Absolute Maximum	
RF Output Power	32 dBm	
Voltage	6 volts	
Storage Temperature	-65°C to +150°C	
Junction Temperature	210°C	

- 3. Exceeding any one or combination of these limits may cause permanent damage to this device.
- M/A-COM Technology Solutions does not recommend sustained operation near these survivability limits.

Functional Block Diagram

Pin Configuration 5

Pin No.	Pin Name	Description	
1	V _{CC1}	1st Stage V _{cc} & RF Output	
2	N/C	No Connection	
3	N/C	No Connection	
4	RF _{IN}	Amplifier Input	
5	RF _{OUT} / V _{CC2}	Amplifier Output & 2nd Stage Vcc	
6	RF _{OUT} / V _{CC2}	Amplifier Output & 2nd Stage Vcc	
7	N/C	No Connection	
8	RF _{IN2}	2nd Stage RF Input	

The exposed pad centered on the package bottom must be connected to the RF and DC ground.

Maximum Operating Conditions ⁶

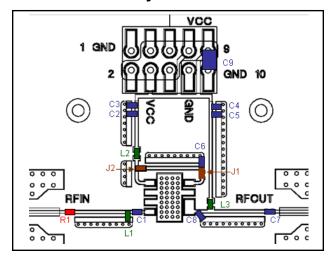
Parameter	Maximum Operating Conditions
Junction Temperature ⁷	170°C
RF Output Power	31 dBm
Operating Temperature	-40°C to +85°C

- 6. These operating conditions will ensure MTTF > 1×10^6 hours.
- 7. Junction Temperature (T_J) = T_A + Θ jc * ((V * I) (P_{OUT} P_{IN})) Typical thermal resistance (Θ jc) = 20° C/W
 - a) For $T_A = 25^{\circ}C$,

 T_J = 74 °C @ 5 V, 535 mA, P_{OUT} = 24 dBm, P_{IN} = 4.5 dBm b) For T_A = 85°C,

 T_J = 123 °C @ 5 V, 430 mA, P_{OUT} = 24 dBm, P_{IN} = 5.5 dBm

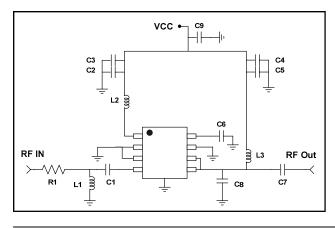
^{*} Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.

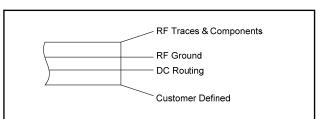

RF Driver Amplifier 250 - 3000 MHz

Rev. V1

Electrical Specifications: Freq. = 2140 MHz, $T_A = 25$ °C, $V_{CC} = +5$ V, $Z_0 = 50$ Ω

Parameter	Units	Min.	Тур.	Max.
Gain	dB	17	19.5	_
Noise Figure	dB	_	6.25	_
Input Return Loss	dB	_	13	_
Output Return Loss	dB	_	13	_
Output P1dB	dBm	_	31	_
Output IP3 P _{IN} = -4 dBm / tone, 1 MHz spacing	dBm	44	47	_
Quiescent Current	mA	_	500	_
Current (P _{IN} = -1 dBm)	mA	_	510	640


2140 MHz PCB Layout


Parts List

Part	Value	Case Style
C1	1.8 pF	0402
C2, C5	1000 pF	0402
C3, C4	0.1 µF	0402
C6	1.2 pF	0402
C7	39 pF	0402
C8	2.7 pF	0402
C9	3.3 µF	1206
L1	2.4 nH	0402
L2	7.5 nH	0402
L3	8.2 nH	0402
R1	10 Ω	0402
J1, J2	Jumper	

2140 Schematic

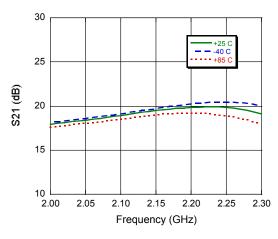
Cross Section View

The PCB dielectric between RF traces and RF ground layers should be chosen to reduce RF discontinuities between 50 Ω lines and package pins. M/A-COM recommends an FR-4 dielectric thickness of 0.008" (0.20 mm) yielding a 50 Ω line width of 0.015" (0.38 mm). The recommended RF metalization is 1 ounce copper.

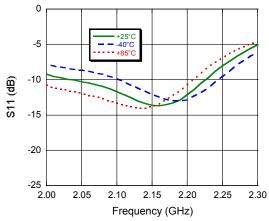
- **ADVANCED:** Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.
- and/or prototype measurements. Commitment to develop is not guaranteed.

 PRELIMINARY: Data Sheets contain information regarding a product MA-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.
- North America Tel: 800.366.2266
 Europe Tel: +353.21.244.6400
 India Tel: +91.80.43537383
 China Tel: +86.21.2407.1588
- Visit www.macomtech.com for additional data sheets and product information.

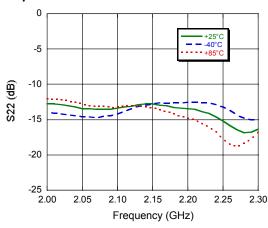
MAAM-009563

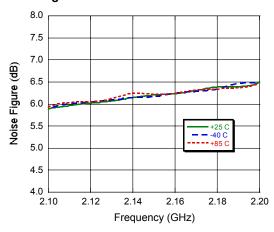


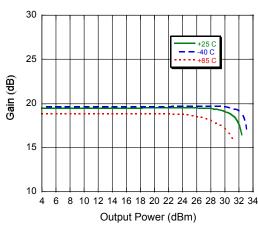
RF Driver Amplifier 250 - 3000 MHz

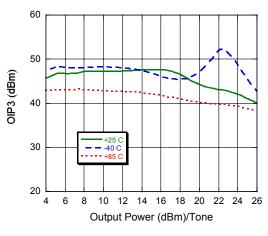

Rev. V1

Typical Performance Curves: 2140 MHz Configuration


Gain


Input Return Loss


Output Return Loss


Noise Figure

P1dB

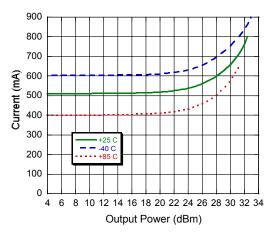
Output IP3

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY:** Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

North America Tel: 800.366.2266
 India Tel: +91.80.43537383
 Europe Tel: +353.21.244.6400
 China Tel: +86.21.2407.1588
 Visit www.macomtech.com for additional data sheets and product information.

MAAM-009563

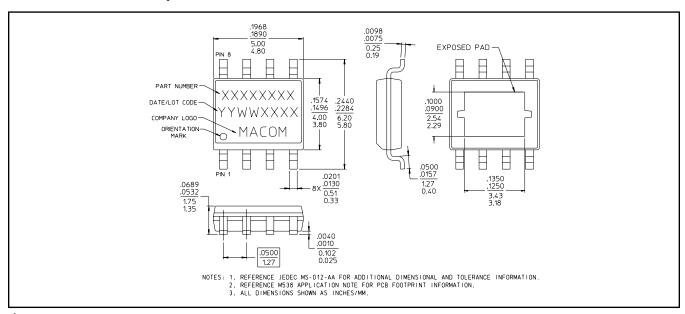


RF Driver Amplifier 250 - 3000 MHz

Rev. V1

Typical Performance Curves, 2140 MHz Configuration

Current


Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these class 2 devices.

Lead-Free SOIC-8EP†

Reference Application Note M538 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 1 requirements. Plating is 100% matte tin over copper.