8-bit Proprietary Microcontrollers

CMOS

F 2 MC-8FX MB95120 series

MB95F128D/F128E/FV100D-101/FV100D-102

■ DESCRIPTION

The MB95120 series is general-purpose, single-chip microcontrollers. In addition to a compact instruction set, the microcontrollers contain a variety of peripheral functions.

Note : F²MC is the abbreviation of FUJITSU Flexible Microcontroller.

■ FEATURE

- F^{2} MC-8FX CPU core

Instruction set optimized for controllers

- Multiplication and division instructions
- 16-bit arithmetic operations
- Bit test branch instruction
- Bit manipulation instructions etc.
- Clock
- Main clock
- Main PLL clock
- Sub clock
- Sub PLL clock
- Timer
- 8/16-bit compound timer $\times 2$ channels
- 16-bit reload timer
- 8/16-bit PPG $\times 2$ channels
- 16-bit PPG $\times 2$ channels
- Timebase timer
- Watch prescaler

Be sure to refer to the "Check Sheet" for the latest cautions on development.

"Check Sheet" is seen at the following support page

URL : http://www.fujitsu.com/global/services/microelectronics/product/micom/support/index.html
"Check Sheet" lists the minimal requirement items to be checked to prevent problems beforehand in system development.

MB95120 Series

(Continued)

- LIN-UART
- Full duplex double buffer
- Clock asynchronous (UART) or clock synchronous (SIO) serial data transfer capable
- UART/SIO
- Full duplex double buffer
- Clock asynchronous (UART) or clock synchronous (SIO) serial data transfer capable
- ${ }^{2} \mathrm{C}^{*}$
- Built-in wake-up function
- External interrupt
- Interrupt by edge detection (rising, falling, or both edges can be selected)
- Can be used to recover from low-power consumption (standby) modes.
- 8/10-bit A/D converter
- 8-bit or 10-bit resolution can be selected
- LCD controller (LCDC)
- 40 SEG $\times 4$ COM (Max 160 pixels)
- With blinking function
- Built-in division resistance for LCD drive/booster : selected by mask option
- Low-power consumption (standby) mode
- Stop mode
- Sleep mode
- Watch mode
- Timebase timer mode
- I/O port
- The number of maximum ports : Max 87
- Port configuration
- General-purpose I/O ports (N-ch open drain) : 2 ports
- General-purpose I/O ports (CMOS) : 85 ports
- Programmable input voltage levels of port
- CMOS input level / hysteresis input level
- Dual operation Flash memory
- Erase/write and read can be executed in the different bank (Upper Bank/Lower Bank) at the same time.
- Flash memory security function

Protects the content of Flash memory (Flash memory product only)
*: Purchase of Fujitsu $I^{2} \mathrm{C}$ components conveys a license under the Philips $\mathrm{I}^{2} \mathrm{C}$ Patent Rights to use, these components in an $I^{2} \mathrm{C}$ system provided that the system conforms to the $I^{2} \mathrm{C}$ Standard Specification as defined by Philips.

PRODUCT LINEUP

Part number*1 Parameter		MB95F128D	MB95F128E
Type		Flash memory product	
ROM capacity		60 Kbytes	
RAM capacity		2 Kbytes	
Reset output		No	
	Clock system	Dual clock	
	Low voltage detection reset	No	
CPU functions		 Number of basic instructions $: 136$ Instruction bit length $: 8$ bits Instruction length $: 1$ to 3 bytes Data bit length $: 1,8$, and 16 bits Minimum instruction execution time $: 61.5 \mathrm{~ns}$ (at machine clock frequency 16.25 MHz) Interrupt processing time $: 0.6 \mu \mathrm{~s}$ (at machine clock frequency 16.25 MHz)	
	Ports (Max 87 ports)	General-purpose I/O port (N-ch open drain) $: 2$ ports General-purpose I/O port (CMOS) $: 85$ ports Programmable input voltage levels of port CMOS input level / hysteresis input level	
	Timebase timer	Interrupt cycle : $0.5 \mathrm{~ms}, 2.1 \mathrm{~ms}, 8.2 \mathrm{~ms}, 32.8 \mathrm{~ms}$ (at main oscillation clock 4 MHz)	
	Watchdog timer	Reset generated cycle At main oscillation clock 10 MHz : Min 105 ms At sub oscillation clock 32.768 kHz $:$ Min 250 ms	
	Wild register	Capable of replacing 3 bytes of ROM data	
	${ }^{12} \mathrm{C}$	Master/slave sending and receiving Bus error function and arbitration function Detecting transmitting direction function Start condition repeated generation and detection functions Built-in wake-up function	
	UART/SIO	Data transfer capable in UART/SIO Full duplex double buffer Variable data length ($5 / 6 / 7 / 8$-bit), built-in baud rate generator NRZ type transfer format, error detected function LSB-first or MSB-first can be selected Clock asynchronous (UART) or clock synchronous (SIO) serial data transfer capable	
	LIN-UART	Dedicated reload timer allowing a wide range of communication speeds to be set Full duplex double buffer Clock asynchronous (UART) or clock synchronous (SIO) serial data transfer capable LIN functions available as the LIN master or LIN slave	
	8/10-bit A/D converter (12 channels)	8 -bit or 10-bit resolution can be selected	

(Continued)

MB95120 Series

(Continued)

Part number*1 Parameter		MB95F128D	MB95F128E
	LCD controller (LCDC)	COM output SEG output LCD drive power supply (bias) pin 40 SEG $\times 4$ COM Duty LCD mode With blinking function Division resistance for LCD drive/b	(Max) (Max) 60 pixels can be displayed selected by mask option
		Built-in internal division resistance : selected by mask option	Built-in booster circuit : selected by mask option
	16-bit reload timer	Two clock modes and two counter operating modes can be selected Square wave form output Count clock : 7 internal clocks and external clock can be selected Counter operating mode : reload mode or one-shot mode can be selected	
	8/16-bit compound timer (2 channels)	Each channel of the timer can be used as " 8 -bit timer $\times 2$ channels" or " 16 -bit timer \times 1 channel" Built-in timer function, PWC function, PWM function, capture function and square wave form output Count clock : 7 internal clocks and external clock can be selected	
	16-bit PPG (2 channels)	PWM mode or one-shot mode can be selected Counter operating clock : Eight selectable clock sources Support for external trigger start	
	8/16-bit PPG (2 channels)	Each channel of the PPG can be used as " 8 -bit PPG $\times 2$ channels" or " 16 -bit PPG \times 1 channel" Counter operating clock: Eight selectable clock sources	
	Watch counter	Count clock : Four selectable clock sources ($125 \mathrm{~ms}, 250 \mathrm{~ms}, 500 \mathrm{~ms}$, or 1 s) Counter value can be set from 0 to 63 (Capable of counting for 1 minute when selecting clock source 1 second and setting counter value to 60)	
	Watch prescaler	4 selectable interval times ($125 \mathrm{~ms}, 250 \mathrm{~ms}, 500 \mathrm{~ms}$, or 1 s)	
	External interrupt (12 channels)	Interrupt by edge detection (rising, falling, or both edges can be selected) Can be used to recover from standby modes	
	ash memory	Supports automatic programming, Embedded Algorithm ${ }^{\text {TM }{ }^{* 3}}$ Write/Erase/Erase-Suspend/Resume commands A flag indicating completion of the algorithm Number of write/erase cycles (Minimum) : 10000 times Data retention time : 20 years Erase can be performed on each block Block protection with external programming voltage Dual operation Flash memory Flash Security Feature for protecting the content of the Flash	
	tandby mode	Sleep, stop, watch, and timebase timer	

*1 : MASK ROM products are currently under consideration.
*2 : For details of option, refer to "■ MASK OPTION".
*3 : Embedded Algorithm is a trade mark of Advanced Micro Devices Inc.
Note : Part number of evaluation product in MB95120 series is MB95FV100D-101 (internal division resistance included) or MB95FV100D-102 (LCD booster circuit included) . When using it, the MCU board (MB2146301A or MB2146-302A) is required.

MB95120 Series

OSCILLATION STABILIZATION WAIT TIME

The initial value of the main clock oscillation stabilization wait time is fixed to the maximum value. The maximum value is shown as follows.

Oscillation stabilization wait time	Remarks
$\left(2^{14}-2\right) / F_{c H}$	Approx. 4.10 ms (at main oscillation clock 4 MHz$)$

PACKAGES AND CORRESPONDING PRODUCTS

Part number	MB95F128D/F128E	MB95FV100D-101/102
FPT-100P-M20	\bigcirc	\times
FPT-100P-M06	\bigcirc	\times
BGA-224P-M08	\times	\bigcirc

[^0]
MB95120 Series

■ DIFFERENCES AMONG PRODUCTS AND NOTES ON SELECTING PRODUCTS

- Notes on Using Evaluation Products

The Evaluation product has not only the functions of the MB95120 series but also those of other products to support software development for multiple series and models of the $\mathrm{F}^{2} \mathrm{MC}-8 \mathrm{FX}$ family. The I/O addresses for peripheral resources not used by the MB95120 series are therefore access-barred. Read/write access to these access-barred addresses may cause peripheral resources supposed to be unused to operate, resulting in unexpected malfunctions of hardware or software.
Particularly, do not use word access to odd numbered byte address in the prohibited areas (If these access are used, the address may be read or written unexpectedly).

Also, as the read values of prohibited addresses on the evaluation product are different to the values on the Flash memory and mask ROM products, do not use these values in the program.

The functions corresponding to certain bits in single-byte registers may not be supported on Flash memory products. However, reading or writing to these bits will not cause malfunction of the hardware. Also, as the evaluation and Flash memory products are designed to have identical software operation, no particular precautions are required.

- Difference of Memory Spaces

If the amount of memory on the Evaluation product is different from that of the Flash memory product, carefully check the difference in the amount of memory from the model to be actually used when developing software.

For details of memory space, refer to "■ CPU CORE".

- Current Consumption

For details of current consumption, refer to "■ ELECTRICAL CHARACTERISTICS".

- Package

For details of information on each package, refer to "■ PACKAGES AND CORRESPONDING PRODUCTS" and "■ PACKAGE DIMENSIONS".

- Operating voltage

The operating voltage are different between the Evaluation and Flash memory products.
For details of operating voltage, refer to "■ ELECTRICAL CHARACTERISTICS".

MB95120 Series

PIN ASSIGNMENT

Note : The P90 to P95 are not used as a general-purpose ports in the MB95F128E.
(Continued)

MB95120 Series

(Continued)

Note : The P90 to P95 are not used as a general-purpose ports in the MB95F128E.

MB95120 Series

PIN DESCRIPTION

Pin no.		Pin name	$\begin{gathered} \text { I/O } \\ \text { circuit } \\ \text { type } \end{gathered}$	Function
LQFP *1	QFP *2			
1	4	Vss	-	Power supply pin (GND)
2	5	PG0	H	General-purpose I/O port
3	6	P00/INT00	C	General-purpose I/O port The pins are shared with external interrupt input. Large current port.
4	7	P01/INT01		
5	8	P02/INT02		
6	9	P03/INT03		
7	10	P04/INT04		
8	11	P05/INT05		
9	12	P06/INT06		
10	13	P07/INT07		
11	14	P10/UIO	G	General-purpose I/O port The pin is shared with UART/SIO ch. 0 data input.
12	15	P11/UO0	H	General-purpose I/O port The pin is shared with UART/SIO ch. 0 data output.
13	16	P12/UCK0		General-purpose I/O port The pin is shared with UART/SIO ch. 0 clock I/O.
14	17	$\begin{aligned} & \text { P13/TRGO/ } \\ & \text { ADTG } \end{aligned}$		General-purpose I/O port The pin is shared with 16 -bit PPG ch. 0 trigger input (TRGO) and A/D converter trigger input (ADTG).
15	18	P14/PPG0		General-purpose I/O port The pin is shared with 16 -bit PPG ch. 0 output.
16	19	P20/PPG00	H	General-purpose I/O port The pins are shared with $8 / 16$-bit PPG ch. 0 output.
17	20	P21/PPG01		
18	21	P22/TO00		General-purpose I/O port
19	22	P23/TO01		The pins are shared with 8/16-bit compound timer ch. 0 output.
20	23	P24/EC0		General-purpose I/O port The pin is shared with $8 / 16$-bit compound timer ch. 0 clock input.
21	24	P50/SCL0	1	General-purpose I/O port The pin is shared with $I^{2} \mathrm{C}$ ch. 0 clock I/O.
22	25	P51/SDA0		General-purpose I/O port The pin is shared with $\mathrm{I}^{2} \mathrm{C}$ ch. 0 data I/O.
23	26	P52/PPG1	H	General-purpose I/O port The pin is shared with 16 -bit PPG ch. 1 output.
24	27	AVR	-	A/D converter reference input pin
25	28	AV cc	-	A/D converter power supply pin

(Continued)

MB95120 Series

Pin no.		Pin name	I/O circuit type*3	Function
LQFP *1	QFP *2			
26	29	AVss	-	A/D converter power supply pin (GND)
27	30	P30/AN00	J	General-purpose I/O port The pins are shared with A/D converter analog input.
28	31	P31/AN01		
29	32	P32/AN02		
30	33	P33/AN03		
31	34	P34/AN04		
32	35	P35/AN05		
33	36	P36/AN06		
34	37	P37/AN07		
35	38	P40/AN08	J	General-purpose I/O port The pins are shared with A/D converter analog input.
36	39	P41/AN09		
37	40	P42/AN10		
38	41	P43/AN11		
39	42	P53/TRG1	H	General-purpose I/O port The pin is shared with 16 -bit PPG ch. 1 trigger input.
40	43	P70/TO0	H	General-purpose I/O port The pin is shared with 16-bit reload timer ch. 0 output.
41	44	P71/TI0		General-purpose I/O port The pin is shared with 16-bit reload timer ch. 0 input.
42	45	P67/SEG39/ SIN	N	General-purpose I/O port The pin is shared with LIN-UART data input (SIN) and LCDC SEG output (SEG39) .
43	46	P66/SEG38/ SOT	M	General-purpose I/O port The pin is shared with LIN-UART data output (SOT) and LCDC SEG output (SEG38) .
44	47	$\begin{gathered} \text { P65/SEG37/ } \\ \text { SCK } \end{gathered}$		General-purpose I/O port The pin is shared with LIN-UART clock I/O (SCK) and LCDC SEG output (SEG37) .
45	48	P64/SEG36/ EC1		General-purpose I/O port The pin is shared with $8 / 16$-bit compound timer ch. 1 clock input (EC1) and LCDC SEG output (SEG36).
46	49	$\begin{gathered} \hline \text { P63/SEG35/ } \\ \text { TO11 } \end{gathered}$		General-purpose I/O port The pins are shared with 8/16-bit compound timer ch. 1 output (TO10, TO11) and LCDC SEG output (SEG34, SEG35) .
47	50	$\begin{gathered} \text { P62/SEG34/ } \\ \text { TO10 } \end{gathered}$		
48	51	$\overline{\mathrm{RST}}$	B'	Reset pin
49	52	X0A	A	Sub clock oscillation pins (32 kHz)
50	53	X1A		
51	54	Vss	-	Power supply pin (GND)

(Continued)

MB95120 Series

Pin no.		Pin name	I/O circuit type*3	Function
LQFP *1	QFP *2			
52	55	X1	A	Main clock oscillation pins
53	56	X0		
54	57	MOD	B	An operating mode designation pin
55	58	$\begin{gathered} \hline \text { P61/SEG33/ } \\ \text { PPG11 } \end{gathered}$	M	General-purpose I/O port The pins are shared with 8/16-bit PPG ch. 1 output (PPG10, PPG11) and LCDC SEG output (SEG32, SEG33).
56	59	$\begin{gathered} \text { P60/SEG32/ } \\ \text { PPG10 } \end{gathered}$		
57	60	PE7/SEG31/ INT13	Q	General-purpose I/O port The pins are shared with external interrupt input (INT10 to INT13) and LCDC SEG output (SEG28 to SEG31) .
58	61	$\begin{gathered} \hline \text { PE6/SEG30/ } \\ \text { INT12 } \end{gathered}$		
59	62	PE5/SEG29/ INT11		
60	63	PE4/SEG28/ INT10		
61	64	PE3/SEG27	M	General-purpose I/O port The pins are shared with LCDC SEG output.
62	65	PE2/SEG26		
63	66	PE1/SEG25		
64	67	PE0/SEG24		
65	68	PD7/SEG23	M	General-purpose I/O port The pins are shared with LCDC SEG output.
66	69	PD6/SEG22		
67	70	PD5/SEG21		
68	71	PD4/SEG20		
69	72	PD3/SEG19		
70	73	PD2/SEG18		
71	74	PD1/SEG17		
72	75	PD0/SEG16		
73	76	PC7/SEG15	M	General-purpose I/O port The pins are shared with LCDC SEG output.
74	77	PC6/SEG14		
75	78	PC5/SEG13		
76	79	Vcc	-	Power supply pin

(Continued)

MB95120 Series

(Continued)

Pin no.		Pin name	$\begin{gathered} \text { I/O } \\ \text { circuit } \\ \text { type }^{\star 3} \end{gathered}$	Function
LQFP *1	QFP *2			
77	80	PC4/SEG12	M	General-purpose I/O port The pins are shared with LCDC SEG output.
78	81	PC3/SEG11		
79	82	PC2/SEG10		
80	83	PC1/SEG09		
81	84	PC0/SEG08		
82	85	PB7/SEG07	M	General-purpose I/O port The pins are shared with LCDC SEG output.
83	86	PB6/SEG06		
84	87	PB5/SEG05		
85	88	PB4/SEG04		
86	89	PB3/SEG03		
87	90	PB2/SEG02		
88	91	PB1/SEG01		
89	92	PBO/SEG00		
90	93	PA3/COM3	M	General-purpose I/O port The pins are shared with LCDC COM output.
91	94	PA2/COM2		
92	95	PA1/COM1		
93	96	PAO/COMO		
94	97	P95*4/C1	S	General-purpose I/O port
95	98	P94*4/C0		
96	99	P93*4/V0	R	General-purpose I/O port The pins are shared with power supply pins for LCDC drive.
97	100	P92*4/V1		
98	1	P91*4/V2		
99	2	P90*4/V3		
100	3	Vcc	-	Power supply pin

*1 : FPT-100P-M20
*2 : FPT-100P-M06
*3: For the I/O circuit type, refer to " ${ }^{\boldsymbol{D}}$ I/O CIRCUIT TYPE".
*4 : The P90 to P95 are not used as a general-purpose ports in the MB95F128E.

MB95120 Series

I/O CIRCUIT TYPE

Type	Circuit	Remarks
A		- Oscillation circuit - High-speed side Feedback resistance : approx. $1 \mathrm{M} \Omega$ - Low-speed side Feedback resistance : approx. $24 \mathrm{M} \Omega$ (Evaluation product : approx. $10 \mathrm{M} \Omega$) Damping resistance : approx. $144 \mathrm{k} \Omega$ (Evaluation product : non-damping resistance)
B	\square	- Only for input - Hysteresis input
B'	\square Ho- Reset input	Hysteresis input
C		- CMOS output - Hysteresis input
G		- CMOS output - CMOS input - Hysteresis input - With pull-up control
H		- CMOS output - Hysteresis input - With pull-up control

(Continued)

MB95120 Series

Type	Circuit	Remarks
I		- N-ch open drain output - CMOS input - Hysteresis input
J		- CMOS output - Hysteresis input - Analog input - With pull-up control
M		- CMOS output - LCD output - Hysteresis input
N		- CMOS output - LCD output - CMOS input - Hysteresis input

(Continued)

MB95120 Series

(Continued)

Type	Circuit	Remarks
Q		- CMOS output - LCD output - Hysteresis input
R		- CMOS output - LCD power supply - Hysteresis input
S		- CMOS output - LCD power supply - Hysteresis input

MB95120 Series

HANDLING DEVICES

- Preventing Latch-up

Care must be taken to ensure that maximum voltage ratings are not exceeded when they are used.
Latch-up may occur on CMOS ICs if voltage higher than Vcc or lower than Vss is applied to input and output pins other than medium- and high-withstand voltage pins or if higher than the rating voltage is applied between Vcc pin and Vss pin.
When latch-up occurs, power supply current increases rapidly and might thermally damage elements.
Also, take care to prevent the analog power supply voltage ($\mathrm{AVcc}, \mathrm{AVR}$) and analog input voltage from exceeding the digital power supply voltage (Vcc) when the analog system power supply is turned on or off.

- Stable Supply Voltage

Supply voltage should be stabilized.
A sudden change in power-supply voltage may cause a malfunction even within the guaranteed operating range of the Vcc power-supply voltage.

For stabilization, in principle, keep the variation in Vcc ripple ($p-p$ value) in a commercial frequency range $(50 / 60 \mathrm{~Hz})$ not to exceed 10% of the standard Vcc value and suppress the voltage variation so that the transient variation rate does not exceed $0.1 \mathrm{~V} / \mathrm{ms}$ during a momentary change such as when the power supply is switched.

- Precautions for Use of External Clock

Even when an external clock is used, oscillation stabilization wait time is required for power-on reset, wake-up from sub clock mode or stop mode.

- PIN CONNECTION

- Treatment of Unused Pin

Leaving unused input pins unconnected can cause abnormal operation or latch-up, leaving to permanent damage.

Unused input pins should always be pulled up or down through resistance of at least $2 \mathrm{k} \Omega$. Any unused input/ output pins may be set to output mode and left open, or set to input mode and treated the same as unused input pins. If there is unused output pin, make it open.

- Treatment of Power Supply Pins on A/D Converter

Connect to be $A V c c=V_{c c}$ and $A V s s=A V R=V_{s s}$ even if the A / D converter is not in use.
Noise riding on the AVcc pin may cause accuracy degradation. So, connect approx. $0.1 \mu \mathrm{~F}$ ceramic capacitor as a bypass capacitor between $A V$ cc and $A V$ ss pins in the vicinity of this device.

- Power Supply Pins

In products with multiple V_{cc} or $\mathrm{V}_{s s}$ pins, the pins of the same potential are internally connected in the device to avoid abnormal operations including latch-up. However, you must connect the pins to external power supply and a ground line to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating.

Moreover, connect the current supply source with the V_{cc} and $\mathrm{V}_{\text {ss }}$ pins of this device at the low impedance.
It is also advisable to connect a ceramic bypass capacitor of approximately $0.1 \mu \mathrm{~F}$ between Vcc and Vss near this device.

MB95120 Series

- Mode Pin (MOD)

Connect the MOD pin directly to V_{cc} or V_{ss} pins.
To prevent the device unintentionally entering test mode due to noise, lay out the printed circuit board so as to minimize the distance from the MOD pin to V_{cc} or V_{ss} pins and to provide a low-impedance connection.

- Analog Power Supply

Always set the same potential to AV cc and Vcc pins. When $\mathrm{V}_{\mathrm{cc}}>\mathrm{AV} \mathrm{cc}$, the current may flow through the ANOO to AN11 pins.

MB95120 Series

■ PROGRAMMING FLASH MEMORY MICROCONTROLLERS USING PARALLEL PROGRAMMER

- Supported Parallel Programmers and Adapters

The following table lists supported parallel programmers and adapters.

Package	Applicable adapter model	Parallel programmers
FPT-100P-M20	TEF110-95F128HSPFV	AF9708 (Ver 02.35G or more)
FPT-100P-M06	TEF110-95F128HSPF	AF9709/B (Ver 02.35G or more)
	AF9723+AF9834 (Ver 02.08E or more)	

Note : For information on applicable adapter models and parallel programmers, contact the following: Flash Support Group, Inc. TEL: +81-53-428-8380

- Sector Configuration

The individual sectors of Flash memory correspond to addresses used for CPU access and programming by the parallel programmer as follows:

- MB95F128D/F128E (60 Kbytes)

*: Programmer addresses are corresponding to CPU addresses, used when the parallel programmer programs data into Flash memory.
These programmer addresses are used for the parallel programmer to program or erase data in Flash memory.

- Programming Method

1) Set the type code of the parallel programmer to 17222.
2) Load program data to programmer addresses 71000 н to 7 FFFFн.
3) Programmed by parallel programmer

MB95120 Series

BLOCK DIAGRAM

MB95120 Series

CPU CORE

1. Memory space

Memory space of the MB95120 series is 64 Kbytes and consists of I/O area, data area, and program area. The memory space includes special - purpose areas such as the general - purpose registers and vector table. Memory map of the MB95120 series is shown below.

- Memory Map

	MB95F128D MB95F128E		MB95FV100D-101 MB95FV100D-102
0000h	I/O	0000H	I/O
0080H	RAM 2 Kbytes	0080H	RAM 3.75 Kbytes
0100H	Register	0100H	Register
0880H	Access prohibited	0200H	
0F80H	Extended I/O	0F80н	Extended I/O
1000H		1000H	
	Flash memory 60 Kbytes		Flash memory 60 Kbytes
FFFFH		FFFFH	

MB95120 Series

2. Register

The MB95120 series has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The dedicated registers are as follows:
Program counter (PC) : A 16-bit register to indicate locations where instructions are stored.
Accumulator (A) : A 16-bit register for temporary storage of arithmetic operations. In the case of an 8-bit data processing instruction, the lower 1 byte is used.
Temporary accumulator (T) : A 16-bit register which performs arithmetic operations with the accumulator. In the case of an 8-bit data processing instruction, the lower 1 byte is used.
Index register (IX) : A 16-bit register for index modification
Extra pointer (EP)
Stack pointer (SP)
: A 16-bit pointer to point to a memory address.
: A 16-bit register to indicate a stack area.
Program status (PS) : A 16-bit register for storing a register bank pointer, a direct bank pointer, and a condition code register

The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and a direct bank pointer (DP) and the lower 8 bits for use as a condition code register (CCR). (Refer to the diagram below.)

- Structure of the program status

MB95120 Series

The RP indicates the address of the register bank currently being used. The relationship between the content of RP and the real address conforms to the conversion rule illustrated below:

- Rule for Conversion of Actual Addresses in the General-purpose Register Area

									RP upper				OP code lower			
	"0"	"0"	"0"	"0"	"0"	"0"	"0"	"1"	R4	R3	R2	R1	R0	b2	b1	b0
	\downarrow	\dagger	\downarrow	\downarrow	\downarrow	\dagger	\downarrow	\downarrow	\downarrow	\dagger	\downarrow	\dagger	\downarrow	\downarrow	\downarrow	\downarrow
Generated address	A15	A14	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0

The DP specifies the area for mapping instructions (16 different instructions such as MOV A, dir) using direct addresses to 0080н to 00FFн.

Direct bank pointer (DP2 to DP0)	Specified address area	Mapping area
XXХв (no effect to mapping)	0000н to 007Fн	0000 to 007F\% (without mapping)
000в (initial value)	0080н to 00FF\%	0080 ${ }^{\text {to } 00 F F}$ (without mapping)
001в		0100н to 017Fн
010в		0180н to 01FF ${ }_{\text {¢ }}$
011в		0200н to 027F
100в		0280н to 02FF\%
101 ${ }_{\text {в }}$		0300н to 037Fн
110в		0380н to 03FF\%
111 ${ }_{\text {в }}$		0400н to 047F

The CCR consists of the bits indicating arithmetic operation results or transfer data contents and the bits that control CPU operations at interrupt.

H flag : Set to " 1 " when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared to "0" otherwise. This flag is for decimal adjustment instructions.
I flag : Interrupt is enabled when this flag is set to " 1 ". Interrupt is disabled when this flag is set to " 0 ". The flag is cleared to "0" when reset.
IL1, IL0 : Indicates the level of the interrupt currently enabled. Processes an interrupt only if its request level is higher than the value indicated by these bits.

IL1	ILO	Interrupt level	Priority
0	0	0	High
0	1	1	
1	0	2	
1	1	3	

N flag : Set to " 1 " if the MSB is set to " 1 " as the result of an arithmetic operation. Cleared to " 0 " when the bit is set to " 0 ".
Z flag : Set to " 1 " when an arithmetic operation results in " 0 ". Cleared to " 0 " otherwise.
V flag : Set to " 1 " if the complement on 2 overflows as a result of an arithmetic operation. Cleared to "0" otherwise.

C flag : Set to "1" when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared to "0" otherwise. Set to the shift-out value in the case of a shift instruction.

MB95120 Series

The following general-purpose registers are provided:
General-purpose registers: 8-bit data storage registers

The general-purpose registers are 8 bits and located in the register banks on the memory. 1-bank contains 8 -register. Up to a total of 32 banks can be used on the MB95120 series. The bank currently in use is indicated by the register bank pointer (RP). 8 -register. Up to a total of 32 banks can be used on the MB95120 series. The bank currently in use is specified by the register bank pointer (RP), and the lower 3 bits of OP code indicates the general-purpose register 0 (R0) to general-purpose register 7 (R7).

- Register Bank Configuration

MB95120 Series

- I/O MAP

Address	Register abbreviation	Register name	R/W	Initial value
0000н	PDR0	Port 0 data register	R/W	00000000в
0001н	DDR0	Port 0 direction register	R/W	00000000в
0002н	PDR1	Port 1 data register	R/W	00000000в
0003н	DDR1	Port 1 direction register	R/W	00000000в
0004н	-	(Disabled)	-	-
0005н	WATR	Oscillation stabilization wait time setting register	R/W	111111118
0006н	PLLC	PLL control register	R/W	00000000в
0007н	SYCC	System clock control register	R/W	1010X011в
0008н	STBC	Standby control register	R/W	00000000в
0009н	RSRR	Reset source register	R	XXXXXXXXв
000Ан	TBTC	Timebase timer control register	R/W	00000000в
000Bн	WPCR	Watch prescaler control register	R/W	00000000в
000CH	WDTC	Watchdog timer control register	R/W	00000000в
000D	-	(Disabled)	-	-
000Eн	PDR2	Port 2 data register	R/W	00000000в
000F\%	DDR2	Port 2 direction register	R/W	00000000в
0010 ${ }^{\text {¢ }}$	PDR3	Port 3 data register	R/W	00000000в
0011н	DDR3	Port 3 direction register	R/W	00000000в
0012н	PDR4	Port 4 data register	R/W	00000000в
0013н	DDR4	Port 4 direction register	R/W	00000000в
0014н	PDR5	Port 5 data register	R/W	00000000в
0015 ${ }_{\text {н }}$	DDR5	Port 5 direction register	R/W	00000000в
0016н	PDR6	Port 6 data register	R/W	00000000в
0017 H	DDR6	Port 6 direction register	R/W	00000000в
0018н	PDR7	Port 7 data register	R/W	00000000в
0019н	DDR7	Port 7 direction register	R/W	00000000в
$\begin{aligned} & 001 \text { Aн, }^{001 В} \\ & \text { 00 } \end{aligned}$	-	(Disabled)	-	-
001CH	PDR9	Port 9 data register	R/W	00000000в
001D ${ }_{\text {н }}$	DDR9	Port 9 direction register	R/W	00000000в
001Eн	PDRA	Port A data register	R/W	00000000в
001Fн	DDRA	Port A direction register	R/W	00000000в
0020н	PDRB	Port B data register	R/W	00000000в
0021н	DDRB	Port B direction register	R/W	00000000в
0022н	PDRC	Port C data register	R/W	00000000в
0023н	DDRC	Port C direction register	R/W	00000000в

(Continued)

MB95120 Series

Address	Register abbreviation	Register name	R/W	Initial value
0024н	PDRD	Port D data register	R/W	00000000в
0025 ${ }^{\text {H }}$	DDRD	Port D direction register	R/W	00000000в
0026н	PDRE	Port E data register	R/W	00000000в
0027H	DDRE	Port E direction register	R/W	00000000в
$\begin{aligned} & \text { 0028н, } \\ & 0029 \mathrm{H} \end{aligned}$	-	(Disabled)	-	-
002Ан	PDRG	Port G data register	R/W	00000000в
002Вн	DDRG	Port G direction register	R/W	00000000в
002C ${ }_{\text {H }}$	-	(Disabled)	-	-
002D	PUL1	Port 1 pull-up register	R/W	00000000в
002Ен	PUL2	Port 2 pull-up register	R/W	00000000в
002F\%	PUL3	Port 3 pull-up register	R/W	00000000в
0030 ${ }^{\text {¢ }}$	PUL4	Port 4 pull-up register	R/W	00000000в
0031н	PUL5	Port 5 pull-up register	R/W	00000000в
0032н	PUL7	Port 7 pull-up register	R/W	00000000в
$\begin{aligned} & \text { 0033н, } \\ & 0034 \mathrm{H} \end{aligned}$	-	(Disabled)	-	-
0035 ${ }^{\text {¢ }}$	PULG	Port G pull-up register	R/W	00000000в
0036 ${ }^{\text {¢ }}$	T01CR1	8/16-bit compound timer 01 control status register 1 ch. 0	R/W	00000000в
0037 ${ }^{\text {H }}$	T00CR1	8/16-bit compound timer 00 control status register 1 ch. 0	R/W	00000000в
0038 ${ }^{\text {- }}$	T11CR1	8/16-bit compound timer 11 control status register 1 ch. 1	R/W	00000000в
0039н	T10CR1	8/16-bit compound timer 10 control status register 1 ch. 1	R/W	00000000в
003Ан	PC01	8/16-bit PPG1 control register ch. 0	R/W	00000000в
003Вн	PC00	8/16-bit PPG0 control register ch.0	R/W	00000000в
003CH	PC11	8/16-bit PPG1 control register ch. 1	R/W	00000000в
003D	PC10	8/16-bit PPG0 control register ch. 1	R/W	00000000в
003Eн	TMCSRH0	16-bit reload timer control status register (upper byte) ch. 0	R/W	00000000в
003F\%	TMCSRL0	16-bit reload timer control status register (lower byte) ch. 0	R/W	00000000в
$\begin{aligned} & \text { 0040н, } \\ & 0041 \mathrm{H} \end{aligned}$	-	(Disabled)	-	-
0042н	PCNTH0	16-bit PPG status control register (upper byte) ch. 0	R/W	00000000в
0043н	PCNTLO	16-bit PPG status control register (lower byte) ch. 0	R/W	00000000в
0044н	PCNTH1	16-bit PPG status control register (upper byte) ch. 1	R/W	00000000в
0045 ${ }^{\text {¢ }}$	PCNTL1	16-bit PPG status control register (lower byte) ch. 1	R/W	00000000в
$\begin{aligned} & \text { 0046н, } \\ & \text { 0047н } \end{aligned}$	-	(Disabled)	-	-
0048	EIC00	External interrupt circuit control register ch.0/ch. 1	R/W	00000000в
0049	EIC10	External interrupt circuit control register ch.2/ch. 3	R/W	00000000в

(Continued)

MB95120 Series

Address	Register abbreviation	Register name	R/W	Initial value
004Ан	EIC20	External interrupt circuit control register ch.4/ch. 5	R/W	00000000в
004Вн	EIC30	External interrupt circuit control register ch.6/ch. 7	R/W	00000000в
004CH	EIC01	External interrupt circuit control register ch.8/ch. 9	R/W	00000000в
004D	EIC11	External interrupt circuit control register ch.10/ch. 11	R/W	00000000в
$\begin{aligned} & \text { 004Ен, } \\ & 004 \mathrm{~F}_{\mathrm{H}} \end{aligned}$	-	(Disabled)	-	-
0050н	SCR	LIN-UART serial control register	R/W	00000000в
0051н	SMR	LIN-UART serial mode register	R/W	00000000в
0052н	SSR	LIN-UART serial status register	R/W	00001000в
0053 ${ }^{\text {¢ }}$	RDR/TDR	LIN-UART reception/transmission data register	R/W	00000000в
0054н	ESCR	LIN-UART extended status control register	R/W	00000100в
0055н	ECCR	LIN-UART extended communication control register	R/W	000000XХв
0056н	SMC10	UART/SIO serial mode control register 1 ch. 0	R/W	00000000в
0057 ${ }_{\text {H }}$	SMC20	UART/SIO serial mode control register 2 ch. 0	R/W	00100000в
0058н	SSR0	UART/SIO serial status register ch.0	R/W	00000001в
0059н	TDR0	UART/SIO serial output data register ch. 0	R/W	00000000в
005Ан	RDR0	UART/SIO serial input data register ch. 0	R	00000000в
$\begin{aligned} & \text { 005Вн } \\ & \text { to } \\ & 005 \mathrm{~F}_{\mathrm{H}} \end{aligned}$	-	(Disabled)	-	-
0060 ${ }^{\text {H }}$	IBCR00	$1^{2} \mathrm{C}$ bus control register 0 ch. 0	R/W	00000000в
0061н	IBCR10	$1^{2} \mathrm{C}$ bus control register 1 ch .0	R/W	00000000в
0062н	IBSR0	$1^{2} \mathrm{C}$ bus status register ch. 0	R	00000000в
0063 ${ }_{\text {H }}$	IDDR0	$1^{2} \mathrm{C}$ data register ch. 0	R/W	00000000в
0064н	IAAR0	$1^{2} \mathrm{C}$ address register ch. 0	R/W	00000000в
0065н	ICCR0	$1^{2} \mathrm{C}$ clock control register ch. 0	R/W	00000000в
$\begin{gathered} \text { 0066н } \\ \text { to } \\ 006 \text { B }_{\boldsymbol{H}} \end{gathered}$	-	(Disabled)	-	-
006CH	ADC1	8/10-bit A/D converter control register 1	R/W	00000000в
006Dн	ADC2	8/10-bit A/D converter control register 2	R/W	00000000в
006Eн	ADDH	8/10-bit A/D converter data register (upper byte)	R/W	00000000в
006F\%	ADDL	8/10-bit A/D converter data register (lower byte)	R/W	00000000в
0070н	WCSR	Watch counter status register	R/W	00000000в
0071н	-	(Disabled)	-	-
0072н	FSR	Flash memory status register	R/W	000X0000в

(Continued)

MB95120 Series

Address	Register abbreviation	Register name	R/W	Initial value
0073 ${ }^{\text {¢ }}$	SWRE0	Flash memory sector writing control register 0	R/W	00000000в
0074н	SWRE1	Flash memory sector writing control register 1	R/W	00000000в
0075	-	(Disabled)	-	-
0076н	WREN	Wild register address compare enable register	R/W	00000000в
0077 ${ }^{\text {¢ }}$	WROR	Wild register data test setting register	R/W	00000000в
0078	-	Register bank pointer (RP), Mirror of direct bank pointer (DP)	-	-
0079н	ILR0	Interrupt level setting register 0	R/W	11111111в
007Ан	ILR1	Interrupt level setting register 1	R/W	11111111в
007Bн	ILR2	Interrupt level setting register 2	R/W	11111111в
007С	ILR3	Interrupt level setting register 3	R/W	11111111в
007D	ILR4	Interrupt level setting register 4	R/W	11111111в
007Ен	ILR5	Interrupt level setting register 5	R/W	11111111в
007F\%	-	(Disabled)	-	-
0F80н	WRARH0	Wild register address setting register (upper byte) ch. 0	R/W	00000000в
0F81н	WRARLO	Wild register address setting register (lower byte) ch. 0	R/W	00000000в
0F82н	WRDR0	Wild register data setting register ch. 0	R/W	00000000в
0F83н	WRARH1	Wild register address setting register (upper byte) ch. 1	R/W	00000000в
0F84н	WRARL1	Wild register address setting register (lower byte) ch. 1	R/W	00000000в
0F85	WRDR1	Wild register data setting register ch. 1	R/W	00000000в
0F86н	WRARH2	Wild register address setting register (upper byte) ch. 2	R/W	00000000в
0F87\%	WRARL2	Wild register address setting register (lower byte) ch. 2	R/W	00000000в
0F88H	WRDR2	Wild register data setting register ch. 2	R/W	00000000в
$\begin{aligned} & \text { OF89н } \\ & \text { to } \\ & \text { 0F91 } \end{aligned}$	-	(Disabled)	-	-
0F92н	T01CR0	8/16-bit compound timer 01 control status register 0 ch. 0	R/W	00000000в
0F93н	T00CR0	8/16-bit compound timer 00 control status register 0 ch. 0	R/W	00000000в
0F94н	T01DR	8/16-bit compound timer 01 data register ch. 0	R/W	00000000в
0F95	T00DR	8/16-bit compound timer 00 data register ch. 0	R/W	00000000в
0F96	TMCRO	8/16-bit compound timer 00/01 timer mode control register ch. 0	R/W	00000000в
0F97 ${ }^{\text {¢ }}$	T11CR0	8/16-bit compound timer 11 control status register 0 ch. 1	R/W	00000000в
0F98н	T10CR0	8/16-bit compound timer 10 control status register 0 ch. 1	R/W	00000000в
0F99н	T11DR	8/16-bit compound timer 11 data register ch. 1	R/W	00000000в
0F9Aн	T10DR	8/16-bit compound timer 10 data register ch. 1	R/W	00000000в

(Continued)

MB95120 Series

Address	Register abbreviation	Register name	R/W	Initial value
0F9Bн	TMCR1	8/16-bit compound timer 10/11 timer mode control register ch. 1	R/W	00000000в
0F9CH	PPS01	8/16-bit PPG1 cycle setting buffer register ch. 0	R/W	11111111в
0F9D	PPS00	8/16-bit PPG0 cycle setting buffer register ch. 0	R/W	11111111в
0F9Eн	PDS01	8/16-bit PPG1 duty setting buffer register ch. 0	R/W	11111111в
0F9F\%	PDS00	8/16-bit PPG0 duty setting buffer register ch. 0	R/W	11111111в
0FAOH	PPS11	8/16-bit PPG1 cycle setting buffer register ch. 1	R/W	11111111в ${ }_{\text {¢ }}$
0FA1н	PPS10	8/16-bit PPG0 cycle setting buffer register ch. 1	R/W	11111111в
0FA2н	PDS11	8/16-bit PPG1 duty setting buffer register ch. 1	R/W	11111111в
0FA3н	PDS10	8/16-bit PPG0 duty setting buffer register ch. 1	R/W	111111118
0FA4н	PPGS	8/16-bit PPG start register	R/W	00000000в
0FA5	REVC	8/16-bit PPG output inversion register	R/W	00000000в
OFA6н	TMRHO/ TMRLRH0	16-bit reload timer/reload register (upper byte) ch. 0	R/W	00000000в
0FA7\%	TMRLO/ TMRLRLO	16-bit reload timer/reload register (lower byte) ch. 0	R/W	00000000в
$\begin{aligned} & \hline \text { OFA8н, } \\ & \text { OFA9н } \end{aligned}$	-	(Disabled)	-	-
ОFAAн	PDCRH0	16-bit PPG down counter register (upper byte) ch. 0	R	00000000в
0FABн	PDCRL0	16-bit PPG down counter register (lower byte) ch. 0	R	00000000в
OFACH	PCSRH0	16-bit PPG cycle setting buffer register (upper byte) ch. 0	R/W	11111111в
0FADн	PCSRLO	16-bit PPG cycle setting buffer register (lower byte) ch. 0	R/W	11111111 ${ }_{\text {B }}$
0FAEн	PDUTH0	16-bit PPG duty setting buffer register (upper byte) ch. 0	R/W	11111111в
OFAFH	PDUTLO	16-bit PPG duty setting buffer register (lower byte) ch. 0	R/W	11111111в
0FB0н	PDCRH1	16-bit PPG down counter register (upper byte) ch. 1	R	00000000в
0FB1н	PDCRL1	16-bit PPG down counter register (lower byte) ch. 1	R	00000000в
0FB2н	PCSRH1	16-bit PPG cycle setting buffer register (upper byte) ch. 1	R/W	111111118
0FB3н	PCSRL1	16-bit PPG cycle setting buffer register (lower byte) ch. 1	R/W	11111111в ${ }_{\text {B }}$
0FB4н	PDUTH1	16-bit PPG duty setting buffer register (upper byte) ch. 1	R/W	11111111 ${ }_{\text {в }}$
0FB5	PDUTL1	16-bit PPG duty setting buffer register (lower byte) ch. 1	R/W	111111118
$\begin{aligned} & \text { OFB6н } \\ & \text { to } \\ & \text { OFBBн } \end{aligned}$	-	(Disabled)	-	-
0FBCн	BGR1	LIN-UART baud rate generator register 1	R/W	00000000в
0FBDн	BGR0	LIN-UART baud rate generator register 0	R/W	00000000в
OFBEн	PSSR0	UART/SIO dedicated baud rate generator prescaler select register ch. 0	R/W	00000000в

(Continued)

MB95120 Series

(Continued)

Address	Register abbreviation	Register name	R/W	Initial value
OFBF	BRSR0	UART/SIO dedicated baud rate generator baud rate setting register ch. 0	R/W	00000000в
$\begin{aligned} & \text { 0FCOH, } \\ & \text { 0FC1 } \end{aligned}$	-	(Disabled)	-	-
0FC2н	AIDRH	A/D input disable register (upper byte)	R/W	00000000в
0FC3н	AIDRL	A/D input disable register (lower byte)	R/W	00000000в
0FC4н	LCDCC	LCDC control register	R/W	00010000в
0FC5	LCDCE1	LCDC enable register 1	R/W	00110000в
0FC6н	LCDCE2	LCDC enable register 2	R/W	00000000в
0FC7 ${ }_{\text {н }}$	LCDCE3	LCDC enable register 3	R/W	00000000в
0FC8н	LCDCE4	LCDC enable register 4	R/W	00000000в
0FC9н	LCDCE5	LCDC enable register 5	R/W	00000000в
0FCA	LCDCE6	LCDC enable register 6	R/W	00000000в
0FCBн	LCDCB1	LCDC blinking setting register 1	R/W	00000000в
OFCCH	LCDCB2	LCDC blinking setting register 2	R/W	00000000в
$\begin{aligned} & \text { OFCDн } \\ & \text { to } \\ & \text { OFEOн } \end{aligned}$	LCDRAM	LCDC display RAM	R/W	00000000в
$\begin{aligned} & \hline \text { OFE1н, } \\ & \text { OFE2н } \end{aligned}$	-	(Disabled)	-	-
0FE3н	WCDR	Watch counter data register	R/W	00111111в
$\begin{aligned} & \text { OFE4н } \\ & \text { to } \\ & \text { OFED } \end{aligned}$	-	(Disabled)	-	-
0FEEн	ILSR	Input level select register	R/W	00000000в
0FEFH	WICR	Interrupt pin select circuit control register	R/W	01000000в
$\begin{aligned} & \text { OFFOн } \\ & \text { to } \\ & \text { OFFFH } \end{aligned}$	-	(Disabled)	-	-

- R/W access symbols

R/W : Readable/Writable
R : Read only
W : Write only

- Initial value symbols
$0 \quad$: The initial value of this bit is " 0 ".
1 : The initial value of this bit is " 1 ".
$\mathrm{X} \quad$: The initial value of this bit is undefined.
Note : Do not write to the " (Disabled) ". Reading the " (Disabled)" returns an undefined value.

MB95120 Series

I INTERRUPT SOURCE TABLE

Interrupt source	Interrupt request number	Vector table address		Bit name of interrupt level setting register	Same levelpriority order(atsimultaneousoccurrence)
		Upper	Lower		
External interrupt ch. 0	IRQ0	FFFAн	FFFB ${ }_{\text {H }}$	LOO [1: 0]	Hig
External interrupt ch. 4					
External interrupt ch. 1	IRQ1	FFF8н	FFF9н	L01 [1: 0]	
External interrupt ch. 5					
External interrupt ch. 2	IRQ2	FFF6н	FFF7 ${ }_{\text {H }}$	L02 [1: 0]	
External interrupt ch. 6					
External interrupt ch. 3	IRQ3	FFF4н	FFF5	L03 [1: 0]	
External interrupt ch. 7					
UART/SIO ch. 0	IRQ4	FFF2н	FFF3 ${ }_{\text {H }}$	L04 [1: 0]	
8/16-bit compound timer ch. 0 (Lower)	IRQ5	FFFOH	FFF1н	L05 [1: 0]	
8/16-bit compound timer ch. 0 (Upper)	IRQ6	FFEEн	FFEFH	L06 [1:0]	
LIN-UART (reception)	IRQ7	FFECH	FFED ${ }_{\text {¢ }}$	L07 [1: 0]	
LIN-UART (transmission)	IRQ8	FFEAн	FFEB ${ }^{\text {}}$	L08 [1: 0]	
8/16-bit PPG ch. 1 (Lower)	IRQ9	FFE8н	FFE9 ${ }_{\text {н }}$	L09 [1:0]	
8/16-bit PPG ch. 1 (Upper)	IRQ10	FFE6н	FFE7 ${ }^{\text {¢ }}$	L10 [1: 0]	
16-bit reload timer ch. 0	IRQ11	FFE4	FFE5 ${ }^{\text {H }}$	L11 [1:0]	
8/16-bit PPG ch. 0 (Upper)	IRQ12	FFE2н	FFE3 ${ }^{\text {¢ }}$	L12 [1:0]	
8/16-bit PPG ch. 0 (Lower)	IRQ13	FFEOH	FFE1H	L13 [1: 0]	
8/16-bit compound timer ch. 1 (Upper)	IRQ14	FFDE	FFDFH	L14 [1: 0]	
16-bit PPG ch. 0	IRQ15	FFDC ${ }_{\text {н }}$	FFDD ${ }_{\text {H }}$	L15 [1: 0]	
$1^{2} \mathrm{C}$ ch. 0	IRQ16	FFDA	FFDB ${ }^{\text {H }}$	L16 [1: 0]	
16-bit PPG ch. 1	IRQ17	FFD8 ${ }_{\text {¢ }}$	FFD9 ${ }_{\text {H }}$	L17 [1: 0]	
8/10-bit A/D converter	IRQ18	FFD6н	FFD7 ${ }_{\text {H }}$	L18 [1:0]	
Timebase timer	IRQ19	FFD4H	FFD5 ${ }_{\text {H }}$	L19 [1: 0]	
Watch prescaler/watch counter	IRQ20	FFD2н	FFD3 ${ }^{\text {H }}$	L20 [1:0]	
External interrupt ch. 8	IRQ21	FFDOн	FFD1н	L21 [1: 0]	∇
External interrupt ch. 9					
External interrupt ch. 10					
External interrupt ch. 11					
8/16-bit compound timer ch. 1 (Lower)	IRQ22	FFCEн	FFCFH	L22 [1:0]	
Flash memory	IRQ23	FFCCH	FFCD ${ }_{\text {H }}$	L23 [1:0]	Low

MB95120 Series

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Rating		Unit	Remarks
		Min	Max		
Power supply voltage*1	Vcc AVcc	Vss - 0.3	Vss +4.0	V	*2
	AVR	Vss - 0.3	Vss + 4.0		*2
Power supply voltage for LCD	V0 to V3	Vss - 0.3	Vss +4.0	V	Products with LCD internal division resistance*3
	V0	Vss - 0.3	Vss +2.0		Products with booster circuit* ${ }^{\text {3 }}$
	V1	Vss - 0.3	Vss +2.0		
	V2	Vss - 0.3	Vss +4.0		
	V3	Vss - 0.3	Vss +6.0		
	C0, C1	Vss - 0.3	Vss +6.0		
Input voltage*1	V_{11}	Vss - 0.3	Vss + 4.0	V	Other than P50, P51*4
	V_{12}	Vss - 0.3	Vss +6.0		P50, P51
Output voltage*1	Vo	Vss - 0.3	Vss + 4.0	V	*4
Maximum clamp current	Iclamp	-2.0	+ 2.0	mA	Applicable to pins*5
Total maximum clamp current	$\Sigma \mid I C L A m p l$	-	20	mA	Applicable to pins*5
"L" level maximum output current	loL1	-	15	mA	Other than P00 to P07
	IoL2		15		P00 to P07
"L" level average current	lolav1	-	4	mA	Other than P00 to P07 Average output current $=$ operating current \times operating ratio (1 pin)
	lolav2		12		P00 to P07 Average output current $=$ operating current \times operating ratio (1 pin)
"L" level total maximum output current	Elob	-	100	mA	
"L" level total average output current	Σ Iolav	-	50	mA	Total average output current $=$ operating current \times operating ratio (Total of pins)
" H " level maximum output current	$\mathrm{IOH1}$	-	-15	mA	Other than P00 to P07
	Іон2		-15		P00 to P07

(Continued)

MB95120 Series

(Continued)

Parameter	Symbol	Rating		Unit	Remarks
		Min	Max		
"H" level average current	Iohav1	-	-4	mA	Other than P00 to P07 Average output current $=$ operating current \times operating ratio (1 pin)
	Iohav2		-8		P00 to P07 Average output current $=$ operating current \times operating ratio (1 pin)
" H " level total maximum output current	$\Sigma \mathrm{loh}$	-	- 100	mA	
" H " level total average output current	Elohav	-	- 50	mA	Total average output current $=$ operating current \times operating ratio (Total of pins)
Power consumption	Pd	-	320	mW	
Operating temperature	TA	-40	+ 85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	- 55	+ 150	${ }^{\circ} \mathrm{C}$	

*1 : The parameter is based on $\mathrm{AV} s \mathrm{~V}=\mathrm{Vss}=0.0 \mathrm{~V}$.
*2 : Apply equal potential to AVcc and Vcc . AVR should not exceed $\mathrm{AVcc}+0.3 \mathrm{~V}$.
*3 : V0 to V3 should not exceed Vcc +0.3 V .
*4 : V_{11} and Vo^{2} should not exceed $\mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}$. V_{11} must not exceed the rating voltage. However, if the maximum current to/from an input is limited by some means with external components, the IcLamp rating supersedes the V_{11} rating.
*5 : Applicable to pins : P00 to P07, P10 to P14, P20 to P24, P30 to P37, P40 to P43, P52, P53

- Use within recommended operating conditions.
- Use at DC voltage (current).
- +B signal is an input signal that exceeds V cc voltage. The $+B$ signal should always be applied a limiting resistance placed between the +B signal and the microcontroller.
- The value of the limiting resistance should be set so that when the $+B$ signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the V_{cc} pin, and this affects other devices.
- Note that if the $+B$ signal is inputted when the microcontroller power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the + B input is applied during power-on, the power supply is provided from the pins and the resulting power supply voltage may not be sufficient to operate the power-on reset.
- Care must be taken not to leave the $+B$ input pin open.
- Note that analog system input/output pins other than the A/D input pins (LCD drive pins, etc.) cannot accept +B signal input.

MB95120 Series

- Sample recommended circuits :
- Input/Output Equivalent circuits

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

MB95120 Series

2. Recommended Operating Conditions
$(\mathrm{AVss}=\mathrm{Vss}=0.0 \mathrm{~V})$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min	Max		
Power supply voltage	Vcc, AV cc	-	-	1.8*	3.3	V	At normal operation, Flash memory product, $\mathrm{T}_{\mathrm{A}}=-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
				2.0*	3.3		At normal operation, Flash memory product, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
				2.6	3.6		Evaluation product $\mathrm{T}_{\mathrm{A}}=+5^{\circ} \mathrm{C} \text { to }+35^{\circ} \mathrm{C}$
				1.5	3.3		Holds condition in stop mode, Flash memory product
Power supply voltage for LCD	$\begin{aligned} & \text { V0 } \\ & \text { to } \\ & \text { V3 } \end{aligned}$	-	-	Vss	Vcc	V	The range of liquid crystal power supply: without up-conversion (The optimal value depends on liquid crystal display elements used.)
A/D converter reference input voltage	AVR	-	-	1.8	AV ${ }_{\text {cc }}$	V	
Operating temperature	TA	-	-	-40	+ 85	${ }^{\circ} \mathrm{C}$	

*: The values vary with the operating frequency, machine clock or analog guarantee range.
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

MB95120 Series

3. DC Characteristics

$$
\left(\mathrm{V}_{\mathrm{cc}}=\mathrm{AV} \mathrm{Vc}=3.3 \mathrm{~V}, \mathrm{AV} \mathrm{ss}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Conditions	Value			Unit	Remarks
				Min	Typ	Max		
" H " level input voltage	$\mathrm{V}_{\text {H1 }}$	P10 (selectable at UIO) , P67 (selectable at SIN)	-	0.7 Vcc	-	$\mathrm{Vcc}+0.3$	V	When selecting CMOS input level (Hysteresis input)
	$\mathrm{V}_{\mathbf{H} 2}$	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { P50, P51 } \\ \text { (selectable at } \left.\mathrm{I}^{2} \mathrm{C}\right) \end{array} \\ \hline \end{array}$	-	0.7 Vcc	-	Vss +5.5	V	
	VIHS1	P00 to P07, P10 to P14, P20 to P24, P30 to P37, P40 to P43, P50 to P53, P60 to P67, P70, P71, P90 to P95, PA0 to PA3, PB0 to PB7, PC0 to PC7, PD0 to PD7, PE0 to PE7	-	0.8 Vcc	-	$\mathrm{Vcc}+0.3$	V	Hysteresis input
	$\mathrm{V}_{\text {HSS } 2}$	P50, P51	-	0.8 V cc	-	Vss +5.5	V	
	V IHM $^{\text {I }}$	RST, MOD	-	0.8 Vcc	-	$\mathrm{Vcc}+0.3$	V	Hysteresis input
"L" level input voltage	VIL	```P10 (selectable at UIO), P50, P51 (selectable at I }\mp@subsup{}{}{2}\textrm{C}\mathrm{) P67 (selectable at SIN)```	-	Vss - 0.3	-	0.3 Vcc	V	When selecting CMOS input level (Hysteresis input)
"L" level input voltage	Vıs	P00 to P07 P10 to P14, P20 to P24, P30 to P37, P40 to P43, P50 to P53, P60 to P67, P70, P71, P90 to P95, PA0 to PA3, PB0 to PB7, PC0 to PC7, PD0 to PD7, PE0 to PE7	-	Vss -0.3	-	0.2 Vcc	V	Hysteresis input
	VILM	$\overline{\text { RST, MOD }}$	-	Vss -0.3	-	0.2 Vcc	V	Hysteresis input
Open-drain output application voltage	V D_{1}	P50, P51	-	Vss - 0.3	-	Vss +5.5	V	

(Continued)

MB95120 Series

Parameter	Symbol	Pin name	Conditions	Value			Unit	Remarks
				Min	Typ	Max		
"H" level output voltage	Vон1	Output pin other than P00 to P07	Іон $=-4.0 \mathrm{~mA}$	2.4	-	-	V	
	Vон2	P00 to P07	I он $=-8.0 \mathrm{~mA}$	2.4	-	-	V	
"L" level output voltage	Volı	Output pin other than P00 to P07, $\overline{\text { RST }}$	$\mathrm{loL}=4.0 \mathrm{~mA}$	-	-	0.4	V	
	Vol2	P00 to P07	$\mathrm{loL}=12 \mathrm{~mA}$	-	-	0.4	V	
Input leakage current (Hi-Z output leakage current)	IL	Port other than P50, P51	$\begin{aligned} & 0.0 \mathrm{~V}<\mathrm{V}_{1}< \\ & \mathrm{V}_{\mathrm{cc}} \end{aligned}$	- 5	-	+ 5	$\mu \mathrm{A}$	When the pull-up prohibition setting
Open-drain output leakage current	ILod	P50, P51	$\left\lvert\, \begin{aligned} & 0.0 \mathrm{~V}<\mathrm{V}_{1}< \\ & \mathrm{V}_{\mathrm{ss}}+5.5 \mathrm{~V} \end{aligned}\right.$	-	-	5	$\mu \mathrm{A}$	
Pull-up resistor	Rpull	P10 to P14, P20 to P24, P30 to P37, P40 to P43, P52, P53, P70, P71	$\mathrm{V}_{1}=0.0 \mathrm{~V}$	25	50	100	k Ω	When the pull-up permission setting
Input capacitance	Cin	Other than AVcc, $A V_{\text {ss }}$, AVR, Vcc, Vss	$\mathrm{f}=1 \mathrm{MHz}$	-	5	15	pF	

(Continued)

MB95120 Series

$\left(\mathrm{V}_{\mathrm{cc}}=\mathrm{AV} \mathrm{Cc}=3.3 \mathrm{~V}, \mathrm{AV}\right.$ ss $=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	$\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$	Pin name	Conditions	Value			Unit	Remarks
				Min	Typ	Max		
Power supply current ${ }^{\star}$	Icc	$V_{c c}$ (External clock operation)	$\begin{aligned} & \mathrm{F}_{\mathrm{CH}}=20 \mathrm{MHz} \\ & \mathrm{~F}_{\mathrm{MP}}=10 \mathrm{MHz} \\ & \text { Main clock mode } \\ & \text { (divided by 2) } \end{aligned}$	-	11.0	14.0	mA	At other than Flash memory writing and erasing
				-	30.0	35.0	mA	At Flash memory writing and erasing
			$\begin{aligned} & \mathrm{F}_{\mathrm{CH}}=32 \mathrm{MHz} \\ & \mathrm{~F}_{\mathrm{MP}}=16 \mathrm{MHz} \\ & \text { Main clock mode } \\ & \text { (divided by 2) } \end{aligned}$	-	17.6	22.4	mA	At other than Flash memory writing and erasing
				-	38.1	44.9	mA	At Flash memory writing and erasing
	Iccs		$\begin{aligned} & \hline \mathrm{F}_{\mathrm{CH}}=20 \mathrm{MHz} \\ & \mathrm{~F}_{\mathrm{MP}}=10 \mathrm{MHz} \\ & \text { Main Sleep mode } \\ & \text { (divided by 2) } \end{aligned}$	-	4.5	6.0	mA	
			$\begin{aligned} & \hline \mathrm{F}_{\mathrm{CH}}=32 \mathrm{MHz} \\ & \mathrm{~F}_{\mathrm{MP}}=16 \mathrm{MHz} \\ & \text { Main Sleep mode } \\ & \text { (divided by 2) } \end{aligned}$	-	7.2	9.6	mA	
	Iccı		$\begin{aligned} & \hline \mathrm{FCL}=32 \mathrm{kHz} \\ & \text { FMPL }=16 \mathrm{kHz} \\ & \text { Sub clock mode } \\ & \text { (divided by } 2 \text {) } \end{aligned}$	-	25	35	$\mu \mathrm{A}$	
	Iccıs		$\begin{aligned} & \hline \text { FcL }=32 \mathrm{kHz} \\ & \text { FMPL } 16 \mathrm{kHz} \\ & \text { Sub sleep mode } \\ & \text { (divided by 2) } \end{aligned}$	-	7	15	$\mu \mathrm{A}$	
	Ісст		Fcl $=32 \mathrm{kHz}$ Watch mode Main stop mode $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	2	10	$\mu \mathrm{A}$	
	Iccmple		$\begin{aligned} & \text { Fch }=4 \mathrm{MHz} \\ & \mathrm{FmP}_{\mathrm{mP}}=10 \mathrm{MHz} \\ & \text { Main PLL mode } \\ & \text { (multiplied by 2.5) } \end{aligned}$	-	10	14	mA	
			$\begin{aligned} & \mathrm{F}_{\mathrm{CH}}=6.4 \mathrm{MHz} \\ & \mathrm{~F}_{\mathrm{MP}}=16 \mathrm{MHz} \\ & \text { Main PLL mode } \\ & \text { (multiplied by 2.5) } \end{aligned}$	-	16.0	22.4	mA	

(Continued)

MB95120 Series

(Continued)
$\left(\mathrm{V} c \mathrm{cc}=\mathrm{AV} \mathrm{cc}=3.3 \mathrm{~V}, \mathrm{AV} \mathrm{ss}=\mathrm{V} s \mathrm{~s}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value			Unit	Remarks
				Min	Typ	Max		
Power supply current*	Iccspll	Vcc (External clock operation)	$\begin{aligned} & \mathrm{F}_{\mathrm{CL}}=32 \mathrm{kHz} \\ & \mathrm{~F}_{\mathrm{MPL}}=128 \mathrm{kHz} \\ & \text { Sub PLL mode } \\ & (\text { multiplied by } 4), \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	-	190	250	$\mu \mathrm{A}$	
	Icts		$\mathrm{F}_{\mathrm{CH}}=10 \mathrm{MHz}$ Timebase timer mode $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	0.4	0.5	mA	
	Іссн		Sub stop mode $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	1	5	$\mu \mathrm{A}$	
	I_{A}	AVcc	$\mathrm{F}_{\mathrm{CH}}=16 \mathrm{MHz}$ At operating of A / D conversion	-	1.3	2.2	mA	
	$\mathrm{I}_{\text {AH }}$		$\mathrm{F}_{\mathrm{CH}}=16 \mathrm{MHz}$ At stopping of A / D conversion $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	1	5	$\mu \mathrm{A}$	
LCD internal division resistance	Rlcd	-	Between V3 and Vss	-	300	-	$\mathrm{k} \Omega$	Products with LCD internal division resistance only
LCD leakage current	Ilcdl	V0 to V3, COM0 to COM3 SEG00 to SEG39	-	-	-	± 1	$\mu \mathrm{A}$	
Output voltage for LCD boost	V_{v}	V3	$\mathrm{V} 1=1.5 \mathrm{~V}$	4.3	4.5	4.7	V	Products with booster circuit only
	Vv2	V2	$\mathrm{V} 1=1.5 \mathrm{~V}$	2.9	3.0	3.1	V	
Reference voltage for LCD boost	$\mathrm{V}_{\mathrm{v} 1}$	V1	$\operatorname{liN}=0.0 \mu \mathrm{~A}$	1.4	1.5	1.7	V	
Reference voltage input impedance	Rrin	V1	-	8.5	9.8	11	$\mathrm{k} \Omega$	
COMO to COM3 output impedance	Rvcom	COM0 to COM3	V 1 to $\mathrm{V} 3=3.6 \mathrm{~V}$	-	-	5	$\mathrm{k} \Omega$	
SEG00 to SEG39 output impedance	Rvseg	SEG00 to SEG39	-	-	-	7	$\mathrm{k} \Omega$	
LCD leak current	Ilcdl	V0 to V3, COM0 to COM3 SEG00 to SEG39	-	-1	-	+1	$\mu \mathrm{A}$	

* : The power-supply current is determined by the external clock.
- Refer to "4. AC characteristics (1) Clock Timing" for Fch and Fcl.
- Refer to "4. AC characteristics (2) Source Clock/Machine Clock" for Fmp and Fmpl.

MB95120 Series

4. AC Characteristics

(1) Clock Timing

$$
\left(\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}, \mathrm{AV} \mathrm{Vs}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Sym-bol	Pin name	Conditions	Value			Unit	Remarks
				Min	Typ	Max		
Clock frequency	Fch	$\mathrm{X0}, \mathrm{X1}$	-	1.00	-	16.25	MHz	When using main oscillation circuit
				1.00	-	32.50	MHz	When using external clock
				3.00	-	10.00	MHz	Main PLL multiplied by 1
				3.00	-	8.13	MHz	Main PLL multiplied by 2
				3.00	-	6.50	MHz	Main PLL multiplied by 2.5
				3.00	-	4.06	MHz	Main PLL multiplied by 4
	FcL	X0A, X1A		-	32.768	-	kHz	When using sub oscillation circuit
				-	32.768	-	kHz	When using sub PLL $\mathrm{V} \mathrm{cc}=2.3 \mathrm{~V}$ to 3.3 V
Clock cycle time	thcy	X0, X1		61.5	-	1000	ns	When using main oscillation circuit
				30.8	-	1000	ns	When using external clock
	tıcyı	X0A, X1A		-	30.5	-	$\mu \mathrm{s}$	When using sub oscillation circuit
Input clock pulse width	$\begin{aligned} & \text { twh1 } \\ & \text { twL1 } \end{aligned}$	X0		61.5	-	-	ns	When using external clock Duty ratio is about 30% to 70\%.
	twh2 twL2	X0A		-	15.2	-	$\mu \mathrm{s}$	
Input clock rise time and fall time	$\begin{aligned} & \text { tcr } \\ & \text { tco } \end{aligned}$	X0, X0A		-	-	5	ns	When using external clock

MB95120 Series

- Input wave form for using external clock (main clock)

X0

- Figure of Main Clock Input Port External Connection

When using a crystal or
ceramic oscillator
When using external clock

- Input wave form for using external clock (sub clock)

- Figure of Sub clock Input Port External Connection

When using a crystal or ceramic oscillator

When using external clock

MB95120 Series

(2) Source Clock/Machine Clock

$$
\left(\mathrm{V} \mathrm{cc}=3.3 \mathrm{~V}, \mathrm{AV} \mathrm{ss}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Sym- bol	Pin name	Value			Unit	Remarks

*1: Clock before setting division due to machine clock division ratio selection bit (SYCC : DIV1 and DIV0) . This source clock is divided by the machine clock division ratio selection bit (SYCC : DIV1 and DIV0), and it becomes the machine clock. Further, the source clock can be selected as follows.

- Main clock divided by 2
- PLL multiplication of main clock (select from 1, 2, 2.5, 4 multiplication)
- Sub clock divided by 2
- PLL multiplication of sub clock (select from 2, 3, 4 multiplication)
*2 : Operation clock of the microcontroller. Machine clock can be selected as follows.
- Source clock (no division)
- Source clock divided by 4
- Source clock divided by 8
- Source clock divided by 16

- Outline of clock generation block

MB95120 Series

\bullet Operating voltage - Operating frequency (When $\mathrm{T}_{\mathrm{A}}=-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

- MB95F128D/F128E
Sub clock mode and watch mode

- Operating voltage - Operating frequency ($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)
- MB95F128D/F128E

Sub PLL operation guarantee range
Sub clock mode and watch mode
operation guarantee range

Source clock frequency (FspL)

MB95120 Series

MB95120 Series

- Main PLL operation frequency

MB95120 Series

(3) External Reset

$$
\left(\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}, \mathrm{AV}_{\mathrm{ss}}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Value		Unit	Remarks
		Min	Max		
$\overline{\text { RST "L" level pulse }}$ width	trstı	2 tmcLk* ${ }^{\text {* }}$	-	ns	At normal operating
		Oscillation time of oscillator*2 +2 tmскк	-	$\mu \mathrm{s}$	At stop mode, sub clock mode, sub sleep mode, and watch mode

*1 : Refer to " (2) Source Clock/Machine Clock" for tmськ.
*2 : Oscillation start time of oscillator is the time that the amplitude reaches 90%. In the crystal oscillator, the oscillation time is between several ms and tens of ms . In ceramic oscillators, the oscillation time is between hundreds of $\mu \mathrm{s}$ and several ms . In the external clock, the oscillation time is 0 ms .

- At normal operating
$\overline{\text { RST }}$

- At stop mode, sub clock mode, sub sleep mode, watch mode, and power-on

MB95120 Series

(4) Power-on Reset

Note: Sudden change of power supply voltage may activate the power-on reset function. When changing power supply voltages during operation, set the slope of rising within $30 \mathrm{mV} / \mathrm{ms}$ as shown below.

MB95120 Series

(5) Peripheral Input Timing

$$
\left(\mathrm{Vcc}=3.3 \mathrm{~V}, \mathrm{AV} \mathrm{Vs}=\mathrm{V} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Value		Unit
			Min	Max	
Peripheral input "H" pulse width	tıн	INT00 to INT07, INT10 to INT13, EC0, EC1, TIO, TRGO/ADTG, TRG1	2 tмськ*	-	ns
Peripheral input "L" pulse width	tни		2 tмськ*	-	ns

*: Refer to " (2) Source Clock/Machine Clock" for tмськ.

INT00 to INT07, INT10 to INT13, EC0, EC1, TIO, TRGO/ADTG, TRG1

MB95120 Series

(6) UART/SIO, Serial I/O Timing
$\left(\mathrm{Vcc}=3.3 \mathrm{~V}, \mathrm{AV}\right.$ ss $=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value		Unit
				Min	Max	
Serial clock cycle time	tscyc	UCKO	Internal clock operation output pin : $\mathrm{CL}_{\mathrm{L}}=80 \mathrm{pF}+1 \mathrm{TTL}$.	4 tmalk*	-	ns
UCK $\downarrow \rightarrow$ UO time	tstov	UCK0, UOO		- 190	+190	ns
Valid UI \rightarrow UCK \uparrow	tivsh	UCK0, UIO		2 tmcLk*	-	ns
UCK $\uparrow \rightarrow$ valid UI hold time	tshix	UCKO, UIO		2 tмсLк*	-	ns
Serial clock "H" pulse width	tshsL	UCK0	External clock operation output pin :$\mathrm{CL}=80 \mathrm{pF}+1 \mathrm{TTL} .$	4 tmсLк*	-	ns
Serial clock "L" pulse width	tsLSH	UCK0		4 tmaLk*	-	ns
UCK $\downarrow \rightarrow$ UO time	tslov	UCKO, UOO		0	190	ns
Valid UI \rightarrow UCK \uparrow	tivsh	UCK0, UIO		2 tmaLk*	-	ns
UCK $\uparrow \rightarrow$ valid UI hold time	tshix	UCK0, UIO		2 tmс<к*	-	ns

* : Refer to " (2) Source Clock/Machine Clock" for tmalk.
- Internal shift clock mode

- External shift clock mode

MB95120 Series

(7) LIN-UART Timing

Sampling at the rising edge of sampling clock*1 and prohibited serial clock delay*2
(ESCR register : SCES bit = 0, ECCR register : SCDE bit = 0)
$\left(\mathrm{Vcc}=3.3 \mathrm{~V}, \mathrm{AVss}=\mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value		Unit
				Min	Max	
Serial clock cycle time	tscyc	SCK	Internal clock operation output pin : $C L=80 \mathrm{pF}+1 \mathrm{TTL}$.	5 tmсLк $^{* 3}$	-	ns
SCK $\downarrow \rightarrow$ SOT delay time	tslovi	SCK, SOT		-95	+95	ns
Valid SIN \rightarrow SCK \uparrow	tivshi	SCK, SIN		tмСLк*3 +190	-	ns
SCK $\uparrow \rightarrow$ valid SIN hold time	tshixI	SCK, SIN		0	-	ns
Serial clock "L" pulse width	tsLSH	SCK	External clock operation outputpin: $\mathrm{CL}=80 \mathrm{pF}+1 \mathrm{TTL}$.	$3 \mathrm{tmaLk}^{* 3}-\mathrm{tr}^{\text {r }}$	-	ns
Serial clock "H" pulse width	tshsL	SCK		tıCLK $^{* 3}+95$	-	ns
SCK $\downarrow \rightarrow$ SOT delay time	tslove	SCK, SOT		-	2 tmсLк $^{* 3}+95$	ns
Valid SIN \rightarrow SCK \uparrow	tivshe	SCK, SIN		190	-	ns
SCK $\uparrow \rightarrow$ valid SIN hold time	tshixe	SCK, SIN		tıCLK $^{* 3}+95$	-	ns
SCK fall time	t_{F}	SCK		-	10	ns
SCK rise time	t_{R}	SCK		-	10	ns

*1: Provide switch function whether sampling of reception data is performed at rising edge or falling edge of the serial clock.
*2 : Serial clock delay function is used to delay half clock for the output signal of serial clock.
*3 : Refer to " (2) Source Clock/Machine Clock" for tmclк.

MB95120 Series

- Internal shift clock mode

- External shift clock mode

MB95120 Series

Sampling at the falling edge of sampling clock*1 and prohibited serial clock delay*2
(ESCR register : SCES bit = 1, ECCR register : SCDE bit = 0)
$\left(\mathrm{Vcc}=3.3 \mathrm{~V}, \mathrm{AV}_{\mathrm{ss}}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value		Unit
				Min	Max	
Serial clock cycle time	tscre	SCK	Internal clock operation output pin : $\mathrm{CL}_{\mathrm{L}}=80 \mathrm{pF}+1 \mathrm{TTL}$.	5 tmalk $^{* 3}$	-	ns
SCK $\uparrow \rightarrow$ SOT delay time	tshovi	SCK, SOT		-95	+95	ns
Valid SIN \rightarrow SCK \downarrow	tivsLi	SCK, SIN		tмсLк ${ }^{\star 3}+190$	-	ns
SCK $\downarrow \rightarrow$ valid SIN hold time	tsLıx	SCK, SIN		0	-	ns
Serial clock "H" pulse width	tshsL	SCK	External clock operation output pin : $C L=80 \mathrm{pF}+1 \mathrm{TTL}$.	$3 \mathrm{tmCLK}^{* 3}-\mathrm{tr}_{\text {R }}$	-	ns
Serial clock "L" pulse width	tslsh	SCK		tmalk $^{* 3}+95$	-	ns
SCK $\uparrow \rightarrow$ SOT delay time	tshove	SCK, SOT		-	2 tMCLK $^{* 3}+95$	ns
Valid SIN \rightarrow SCK \downarrow	tivsle	SCK, SIN		190	-	ns
SCK $\downarrow \rightarrow$ valid SIN hold time	tslixe	SCK, SIN		tmCLk $^{* 3}+95$	-	ns
SCK fall time	tF_{F}	SCK		-	10	ns
SCK rise time	t_{R}	SCK		-	10	ns

*1: Provide switch function whether sampling of reception data is performed at rising edge or falling edge of the serial clock.
*2 : Serial clock delay function is used to delay half clock for the output signal of serial clock.
*3 : Refer to " (2) Source Clock/Machine Clock" for tmclk.

MB95120 Series

- Internal shift clock mode

- External shift clock mode

MB95120 Series

Sampling at the rising edge of sampling clock*1 and enabled serial clock delay*2
(ESCR register : SCES bit = 0, ECCR register : SCDE bit = 1)

$$
\left(\mathrm{Vcc}=3.3 \mathrm{~V}, \mathrm{AV} \mathrm{ss}=\mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Conditions	Value		Unit
				Min	Max	
Serial clock cycle time	tscyc	SCK	Internal clock operation output pin : $\mathrm{CL}_{\mathrm{L}}=80 \mathrm{pF}+1 \mathrm{TTL}$.	5 tmсLk ${ }^{\text {* }}$	-	ns
SCK $\uparrow \rightarrow$ SOT delay time	tshovi	SCK, SOT		-95	+95	ns
Valid SIN \rightarrow SCK \downarrow	tivsti	SCK, SIN		tmCLK $^{* 3}+190$	-	ns
SCK $\downarrow \rightarrow$ valid SIN hold time	tstıxı	SCK, SIN		0	-	ns
SOT \rightarrow SCK \downarrow delay time	tsovıl	SCK, SOT		-	4 tmclk $^{* 3}$	ns

*1: Provide switch function whether sampling of reception data is performed at rising edge or falling edge of the serial clock.
*2 : Serial clock delay function is used to delay half clock for the output signal of serial clock.
*3: Refer to " (2) Source Clock/Machine Clock" for tmclк.

MB95120 Series

Sampling at the falling edge of sampling clock*1 and enabled serial clock delay*2
(ESCR register : SCES bit = 1, ECCR register : SCDE bit = 1)

$$
\left(\mathrm{V} \mathrm{cc}=3.3 \mathrm{~V}, \mathrm{AV} \mathrm{ss}=\mathrm{V} s \mathrm{~s}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Conditions	Value		Unit
				Min	Max	
Serial clock cycle time	tscyc	SCK	Internal clock operating output pin :$\mathrm{C}_{\mathrm{L}}=80 \mathrm{pF}+1 \mathrm{TTL} .$	5 tmalk $^{* 3}$	-	ns
SCK $\downarrow \rightarrow$ SOT delay time	tslovi	SCK, SOT		-95	+95	ns
Valid SIN \rightarrow SCK \uparrow	tivshi	SCK, SIN		tmскк ${ }^{* 3}+190$	-	ns
SCK $\uparrow \rightarrow$ valid SIN hold time	tshixI	SCK, SIN		0	-	ns
SOT \rightarrow SCK \uparrow delay time	tsovHı	SCK, SOT		-	4 tmcLk*3	ns

*1: Provide switch function whether sampling of reception data is performed at rising edge or falling edge of the serial clock.
*2 : Serial clock delay function is used to delay half clock for the output signal of serial clock.
*3 : Refer to " (2) Source Clock/Machine Clock" for tmськ.

MB95120 Series

(8) $I^{2} C$ Timing

$\left(\mathrm{Vcc}=3.3 \mathrm{~V}, \mathrm{AV}\right.$ ss $=\mathrm{V}$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$								
Parameter	Symbol	Pin name	Conditions	Value				Unit
				Standard-mode		Fast-mode		
				Min	Max	Min	Max	
SCL clock frequency	fscl	SCLO	$\begin{aligned} & \mathrm{R}=1.7 \mathrm{k} \Omega, \\ & \mathrm{C}=50 \mathrm{pF}^{* 1} \end{aligned}$	0	100	0	400	kHz
(Repeat) Start condition hold time SDA $\downarrow \rightarrow$ SCL \downarrow	thd; STA	$\begin{aligned} & \text { SCLO } \\ & \text { SDAO } \end{aligned}$		4.0	-	0.6	-	$\mu \mathrm{s}$
SCL clock "L" width	tlow	SCL0		4.7	-	1.3	-	$\mu \mathrm{s}$
SCL clock "H" width	thigh	SCL0		4.0	-	0.6	-	$\mu \mathrm{s}$
(Repeat) Start condition setup time SCL $\uparrow \rightarrow$ SDA \downarrow	tsu;sta	$\begin{aligned} & \text { SCLO } \\ & \text { SDAO } \end{aligned}$		4.7	-	0.6	-	$\mu \mathrm{s}$
Data hold time SCL $\downarrow \rightarrow$ SDA $\downarrow \uparrow$	thd; DAT	$\begin{aligned} & \text { SCLO } \\ & \text { SDAO } \end{aligned}$		0	3.45*2	0	0.9*3	$\mu \mathrm{s}$
Data setup time SDA $\downarrow \uparrow \rightarrow$ SCL \uparrow	tsu;Dat	$\begin{aligned} & \text { SCLO } \\ & \text { SDAO } \end{aligned}$		0.25	-	0.1	-	$\mu \mathrm{s}$
Stop condition setup time SCL $\uparrow \rightarrow$ SDA \uparrow	tsu;sto	$\begin{aligned} & \text { SCLO } \\ & \text { SDAO } \end{aligned}$		4.0	-	0.6	-	$\mu \mathrm{s}$
Bus free time between stop condition and start condition	tbuf	$\begin{aligned} & \text { SCLO } \\ & \text { SDAO } \end{aligned}$		4.7	-	1.3	-	$\mu \mathrm{s}$

*1: R, C : Pull-up resistor and load capacitor of the SCL and SDA lines.
*2 : The maximum thd;DAT have only to be met if the device dose not stretch the "L" width (tıow) of the SCL signal.
*3: A fast-mode $I^{2} C$-bus device can be used in a standard-mode $I^{2} C$-bus system, but the requirement tsu;DAT ≥ 250 ns must then be met.

MB95120 Series

$\left(\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}, \mathrm{AV}_{\mathrm{ss}}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	$\begin{gathered} \text { Pin } \\ \text { name } \end{gathered}$	Conditions	Value*2		Unit	Remarks
				Min	Max		
SCL clock "L" width	tıow	SCLO	$\begin{aligned} & \mathrm{R}=1.7 \mathrm{k} \Omega, \\ & \mathrm{C}=50 \mathrm{pF}^{* 1} \end{aligned}$	($2+\mathrm{nm} / 2)$ tмсцк - 20	-	ns	Master mode
SCL clock "H" width	tніян	SCLO		($\mathrm{nm} / 2$) tmack - 20	$(\mathrm{nm} / 2)$) tmalk +20	ns	Master mode
Start condition hold time	thi;STA	$\begin{array}{\|l} \text { SCLO } \\ \text { SDAO } \end{array}$		$(-1+n \mathrm{~mm} / 2)$ tmсıк -20	$(-1+n m)$ tмсцк +20	ns	Master mode Maximum value is applied when m, $n=1,8$. Otherwise, the minimum value is applied.
Stop condition setup time	tsu;sto	$\begin{aligned} & \hline \text { SCLO } \\ & \text { SDAO } \end{aligned}$		$(1+n m / 2)$ twcıк - 20	$(1+\mathrm{nm} / 2)$ tnclk +20	ns	Master mode
Start condition setup time	tsu;sta	$\begin{array}{\|l} \hline \text { SCLO } \\ \text { SDAO } \end{array}$		$(1+n m / 2)$ twcık -20	$(1+\mathrm{nm} / 2)$ tnclk +20	ns	Master mode
Bus free time between stop condition and start condition	tBuF	$\begin{array}{\|l} \text { SCLO } \\ \text { SDAO } \end{array}$		$(2 \mathrm{~nm}+4)$ tmaLk - 20	-	ns	
Data hold time	thr; Pat	$\begin{aligned} & \text { SCLO } \\ & \text { SDAO } \end{aligned}$		3 tпськ - 20	-	ns	Master mode
Data setup time	tsu;Dat	$\begin{array}{\|l} \text { SCLO } \\ \text { SDAO } \end{array}$		$(-2+\mathrm{nm} / 2)$ twcıк -20	$(-1+n m / 2)$ twack +20	ns	Master mode When assuming that " L " of SCL is not extended, the minimum value is applied to first bit of continuous data. Otherwise, the maximum value is applied.
Setup time between clearing interrupt and SCL rising	tsu; ${ }^{\text {nt }}$	SCLO		($\mathrm{nm} / \mathrm{/}$)) тмск - 20	$(1+\mathrm{nm} / 2)$ tncıк +20	ns	Minimum value is applied to interrupt at 9th SCL \downarrow. Maximum value is applied to interrupt at 8th SCL \downarrow.
$\begin{aligned} & \text { SCL clock "L" } \\ & \text { width } \end{aligned}$	tıow	SCLO		4 tпскк - 20	-	ns	At reception
$\begin{aligned} & \text { SCL clock "H" } \\ & \text { width } \end{aligned}$	tнія	SCLO		4 tnclk - 20	-	ns	At reception
Start condition detection	thi;STA	$\begin{aligned} & \text { SCLO } \\ & \text { SDAO } \end{aligned}$		2 tnclk - 20	-	ns	Undetected when 1 tucıк is used at reception

(Continued)

MB95120 Series

(Continued)

$$
\left(\mathrm{Vcc}=3.3 \mathrm{~V}, \mathrm{AV} \mathrm{ss}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	$\begin{aligned} & \text { Sym- } \\ & \text { bol } \end{aligned}$	Pin name	Conditions	Value*2		Unit	Remarks
				Min	Max		
Stop condition detection	tsu;sto	$\begin{aligned} & \text { SCLO } \\ & \text { SDAO } \end{aligned}$	$\begin{aligned} & \mathrm{R}=1.7 \mathrm{k} \Omega, \\ & \mathrm{C}=50 \mathrm{pF}{ }^{* 1} \end{aligned}$	2 tmсlк - 20	-	ns	Undetected when 1 tmсlк is used at reception
Restart condition detection condition	tsu;sta	$\begin{aligned} & \text { SCLO } \\ & \text { SDAO } \end{aligned}$		2 tmclk - 20	-	ns	Undetected when 1 tmclк is used at reception
Bus free time	tbuf	$\begin{aligned} & \text { SCLO } \\ & \text { SDAO } \end{aligned}$		2 tmсlк - 20	-	ns	At reception
Data hold time	thd; dat	$\begin{aligned} & \text { SCLO } \\ & \text { SDAO } \end{aligned}$		2 tmсlк - 20	-	ns	At slave transmission mode
Data setup time	tsu;DAt	$\begin{aligned} & \text { SCLO } \\ & \text { SDAO } \end{aligned}$		tıow - 3 tmalk - 20	-	ns	At slave transmission mode
Data hold time	thd; dAT	$\begin{aligned} & \text { SCLO } \\ & \text { SDAO } \end{aligned}$		0	-	ns	At reception
Data setup time	tsu;dat	$\begin{aligned} & \text { SCLO } \\ & \text { SDAO } \end{aligned}$		tmalk - 20	-	ns	At reception
SDA $\downarrow \rightarrow$ SCL \uparrow (at wakeup function)	twakeUP	$\begin{aligned} & \text { SCLO } \\ & \text { SDAO } \end{aligned}$		Oscillation stabilization wait time + 2 tmсlк - 20	-	ns	

*1: R, C : Pull-up resistor and load capacitor of the SCL and SDA lines.
*2 : • Refer to " (2) Source Clock/Machine Clock" for tmсlк.

- m is CS4 bit and CS3 bit (bit 4 and bit 3) of $I^{2} C$ clock control register (ICCR) .
- n is CS2 bit to CS0 bit (bit 2 to bit 0) of $\mathrm{I}^{2} \mathrm{C}$ clock control register (ICCR) .
- Actual timing of $\mathrm{I}^{2} \mathrm{C}$ is determined by m and n values set by the machine clock ($\mathrm{t}_{\text {mCLк }}$) and CS4 to CS0 of ICCRO register.
- Standard-mode :
m and n can be set at the range : $0.9 \mathrm{MHz}<\mathrm{t}_{\text {mсLк }}$ (machine clock) $<10 \mathrm{MHz}$. Setting of m and n determines the machine clock that can be used below.
$(m, n)=(1,8)$
: $0.9 \mathrm{MHz}<$ tmcl $\leq 1 \mathrm{MHz}$
$(\mathrm{m}, \mathrm{n})=(1,22),(5,4),(6,4),(7,4),(8,4): 0.9 \mathrm{MHz}<\mathrm{tmCLK} \leq 2 \mathrm{MHz}$
$(\mathrm{m}, \mathrm{n})=(1,38),(5,8),(6,8),(7,8),(8,8): 0.9 \mathrm{MHz}<\mathrm{t}_{\text {мськ }} \leq 4 \mathrm{MHz}$
$(\mathrm{m}, \mathrm{n})=(1,98) \quad: 0.9 \mathrm{MHz}<$ tмсLк $^{5} \leq 10 \mathrm{MHz}$
- Fast-mode :
m and n can be set at the range : $3.3 \mathrm{MHz}<\mathrm{t}_{\text {mcLk }}$ (machine clock) $<10 \mathrm{MHz}$.
Setting of m and n determines the machine clock that can be used below.
$(m, n)=(1,8)$
$(\mathrm{m}, \mathrm{n})=(1,22),(5,4) \quad: 3.3 \mathrm{MHz}<$ tмськ $^{5} 8 \mathrm{MHz}$
$(m, n)=(6,4)$
: 3.3 MHz < tmсLк $^{\leq 10 \mathrm{MHz}, ~}$

MB95120 Series

5. A/D Converter
(1) A/D Converter Electrical Characteristics
$\left(\mathrm{AVcc}=\mathrm{Vcc}=1.8 \mathrm{~V}\right.$ to $3.3 \mathrm{~V}, \mathrm{AVss}=\mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Value			Unit	Remarks
		Min	Typ	Max		
Resolution	-	-	-	10	bit	
Total error		-3.0	-	+ 3.0	LSB	
Linearity error		-2.5	-	+ 2.5	LSB	
Differential linear error		- 1.9	-	+ 1.9	LSB	
Zero transition voltage	Vot	AVss - 1.5 LSB	AVss + 0.5 LSB	AVss + 2.5 LSB	V	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{AVcc} \leq \\ & 3.3 \mathrm{~V} \end{aligned}$
		AVss - 0.5 LSB	AVss + 1.5 LSB	AVss + 3.5 LSB	V	$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{AVcc}< \\ & 2.7 \mathrm{~V} \end{aligned}$
Full-scale transition voltage	Vfst	AVR - 3.5 LSB	AVR - 1.5 LSB	AVR + 0.5 LSB	V	$\begin{aligned} & \text { 2.7 } \mathrm{V} \leq \mathrm{AVcc} \leq \\ & 3.3 \mathrm{~V} \end{aligned}$
		AVR - 2.5 LSB	AVR - 0.5 LSB	AVR + 1.5 LSB	V	$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{AVcc}< \\ & 2.7 \mathrm{~V} \end{aligned}$
Compare time	-	0.6	-	140	$\mu \mathrm{s}$	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{AVcc} \leq \\ & 3.3 \mathrm{~V} \end{aligned}$
		20	-	140	$\mu \mathrm{s}$	$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{AVcc}< \\ & 2.7 \mathrm{~V} \end{aligned}$
Sampling time	-	0.4	-	∞	$\mu \mathrm{s}$	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{AVcc} \leq \\ & 3.3 \mathrm{~V}, \\ & \text { At external } \\ & \text { impedance }<1.8 \mathrm{k} \Omega \end{aligned}$
		30	-	∞	$\mu \mathrm{s}$	$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{AVcc}< \\ & 2.7 \mathrm{~V}, \\ & \text { At external } \\ & \text { impedance < } \\ & 14.8 \mathrm{k} \Omega \end{aligned}$
Analog input current	IAIN	-0.3	-	+0.3	$\mu \mathrm{A}$	
Analog input voltage	Vain	AVss	-	AVR	V	
Reference voltage	-	AVss + 1.8	-	AVcc	V	AVR pin
Reference voltage supply current	IR	-	400	600	$\mu \mathrm{A}$	AVR pin, During A/D operation
	IRH	-	-	5	$\mu \mathrm{A}$	AVR pin, At stop mode

MB95120 Series

(2) Notes on Using A/D Converter

- About the external impedance of analog input and its sampling time

A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision. Therefore to satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the register value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. Also, if the sampling time cannot be sufficient, connect a capacitor of about $0.1 \mu \mathrm{~F}$ to the analog input pin.

- Analog input equivalent circuit

During sampling: ON

	R	C
$2.7 \mathrm{~V} \leq \mathrm{AVcc} \leq 3.6 \mathrm{~V}$	$1.7 \mathrm{k} \Omega($ Max $)$	14.5 pF (Max)
$1.8 \mathrm{~V} \leq \mathrm{AVcc}<2.7 \mathrm{~V}$	$84 \mathrm{k} \Omega$ (Max)	25.2 pF (Max)

Note : The values are reference values.

- The relationship between external impedance and minimum sampling time

- About errors

As $\mid A V R$ - $A V$ ssl becomes smaller, values of relative errors grow larger.

MB95120 Series

(3) Definition of A/D Converter Terms

- Resolution

The level of analog variation that can be distinguished by the A/D converter.
When the number of bits is 10 , analog voltage can be divided into $2^{10}=1024$.

- Linearity error (unit : LSB)

The deviation between the value along a straight line connecting the zero transition point
("00 00000000 " $\leftarrow \rightarrow$ "00 00000001 ") of a device and the full-scale transition point
("1111111111" $\leftarrow \rightarrow$ "11 11111110") compared with the actual conversion values obtained.

- Differential linear error (Unit : LSB)

Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal value.

- Total error (unit: LSB)

Difference between actual and theoretical values, caused by a zero transition error, full-scale transition error, linearity error, quantum error, and noise.

(Continued)

MB95120 Series

(Continued)

MB95120 Series

6. Flash Memory Program/Erase Characteristics

Parameter	Value			Unit	Remarks
	Min	Typ	Max		
Sector erase time (4 Kbytes sector)	-	$0.2^{\star 1}$	3.0*2	S	Excludes 00 н programming prior erasure.
Sector erase time (16 Kbytes sector)	-	0.5*1	12.0*2	S	Excludes 00 н programming prior erasure.
Byte programming time	-	32	3600	$\mu \mathrm{s}$	Excludes system-level overhead.
Program/erase cycle	10000	-	-	cycle	
Power supply voltage at program/erase	2.7	-	3.3	V	
Flash memory data retention time	20*3	-	-	year	Average $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$

${ }^{*} 1: \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}, 10000$ cycles
${ }^{*} 2: \mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V}, 10000$ cycles
*3: This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at $+85^{\circ} \mathrm{C}$).

MB95120 Series

- MASK OPTION

No.	Part number	MB95F128D	MB95F128E	MB95FV100D-101	MB95FV100D-102
	Specifying procedure	Setting disabled		Setting disabled	Setting disabled
1	Clock mode select - Single-system clock mode - Dual-system clock mode	Dual-system clock mode		Changing by the switch on MCU board	
2	LCDC Booster circuit select - Internal division resistance - Booster circuit	internal division resistance	Booster circuit	internal division resistance	Booster circuit
3	Low voltage detection reset* - With low voltage detection reset - Without low voltage detection reset	No		No	
4	Clock supervisor* - With clock supervisor - Without clock supervisor	No		No	
5	Oscillation stabilization wait time	Fixed to oscillation stabilization wait time of (2 $2^{14}-2$) / F_{CH}		Fixed to oscillation stabilization wait time of (2 $2^{14}-2$)/Fch	

[^1]
MB95120 Series

- ORDERING INFORMATION

Part number	Package	Remarks
MB95F128DPMC MB95F128EPMC	100-pin plastic LQFP (FPT-100P-M20)	
MB95F128DPF MB95F128EPF	100-pin plastic QFP (FPT-100P-M06)	
MB2146-301A (MB95FV100D-101PBT)	MCU board MB2146-302A (MB95FV100D-102PBT)	$\left.\begin{array}{c}\text { 224-pin plastic PFBGA } \\ \text { (BGA-224P-M08) }\end{array}\right)$

MB95120 Series

PACKAGE DIMENSIONS

100-pin plastic LQFP	Lead pitch	0.50 mm
	Package width \times package length	$14.0 \mathrm{~mm} \times 14.0 \mathrm{~mm}$
	Lead shape	Gullwing
	Sealing method	Plastic mold
Mounting height	1.70 mm Max	

Please confirm the latest Package dimension by following URL.
http://edevice.fujitsu.com/fj/DATASHEET/ef-ovpklv.html

MB95120 Series

(Continued)

100-pin plastic QFP	Lead pitch	0.65 mm
	Package width \times package length	$14.00 \times 20.00 \mathrm{~mm}$
	Lead shape	Gullwing
	Sealing method	Plastic mold
	Mounting height	3.35 mm MAX
	Code (Reference)	P-QFP100-14×20-0.65
(FPT-100P-M06)		

Please confirm the latest Package dimension by following URL.
http://edevice.fujitsu.com/fj/DATASHEET/ef-ovpklv.html

MB95120 Series

The information for microcontroller supports is shown in the following homepage. http://www.fujitsu.com/global/services/microelectronics/product/micom/support/index.html

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.
If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.
The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

[^0]: O : Available
 \times : Unavailable

[^1]: *: Low voltage detection reset and clock supervisor are options of $5-\mathrm{V}$ products.

