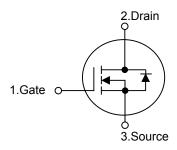


UNISONIC TECHNOLOGIES CO., LTD

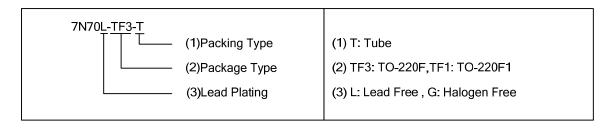
7N70 Power MOSFET

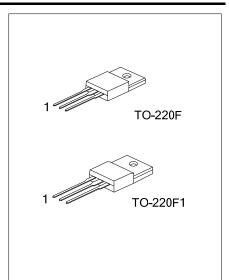
7 Amps, 700 Volts N-CHANNEL POWER MOSFET


DESCRIPTION

The UTC 7N70 is a high voltage MOSFET and is designed to have better characteristics, such as fast switching time, low gate charge, low on-state resistance and have a high rugged avalanche characteristics. This power MOSFET is usually used at high speed switching applications in power supplies, PWM motor controls, high efficient DC to DC converters and bridge circuits.

FEATURES


- * $R_{DS(ON)} = 1.5\Omega @V_{GS} = 10 \text{ V}$
- * Ultra low gate charge (typical 30 nC)
- * Low reverse transfer capacitance (C_{RSS} = typical 18 pF)
- * Fast switching capability
- * Avalanche energy specified
- * Improved dv/dt capability, high ruggedness


SYMBOL

ORDERING INFORMATION

Order Number		Dookogo	Pin	Assignn	Dooking		
Lead Free	Halogen Free	Package	1	2	3	Packing	
7N70L-TF3-T	7N70G-TF3-T	TO-220F	G	D	S	Tube	
7N70L-TF1-T	7N70G-TF1-T	TO-220F1	G	D	S	Tube	

■ ABSOLUTE MAXIMUM RATINGS (T_C = 25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V_{DSS}	700	V
Gate-Source Voltage		V_{GSS}	±30	V
Continuous Drain Current	$T_C = 25^{\circ}C$	- I _D	7.0	Α
	$T_{C} = 100^{\circ}C$		4.7	Α
Drain Current Pulsed (Note 1)		I _{DM}	28	Α
Avalanche Energy, Single Pulsed (Note 2)		E _{AS}	530	mJ
Avalanche Energy, Repetitive, Limited by T _{JMAX}		E _{AR}	14.2	mJ
Peak Diode Recovery dv/dt (Note 3)		dv/dt	4.5	V/ns
Power Dissipation (T _C = 25°C)	TO-220F	В	142	W
	TO-220F1	P _D	48	W
Junction Temperature		TJ	+150	$^{\circ}\mathbb{C}$
Storage Temperature		T _{STG}	-55 ~ +150	$^{\circ}\!\mathbb{C}$

Note Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT
Junction to Ambient	TO-220F	0	62.5	°C/W
	TO-220F1	θ_{JA}	62.5	°C/W
Junction to Case	TO-220F	0	0.88	°C/W
	TO-220F1 θ _{JC}		2.6	°C/W

■ ELECTRICAL CHARACTERISTICS (T_C =25°C, unless otherwise specified)

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF Characteristics							
Drain-Source Breakdown Voltage		BV_{DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	700			V
Drain-Source Leakage Current		Ince	$V_{DS} = 700 \text{ V}, V_{GS} = 0 \text{ V}$			1	μΑ
			$V_{DS} = 560 \text{ V}, T_{C} = 125^{\circ}\text{C}$			1	μΑ
Gate-Source Leakage Current	Forward	LC S S	$V_{GS} = 30 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA
	Reverse		$V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA
Breakdown Voltage Temperature		$\wedge BV_nee / \wedge T_L$	I _D = 250 μA, Referenced to 25°C		0.67		V/℃
Coefficient		Z2 (D33, Z 1)	15 - 200 μπ, πειεισιώσα το 20 Ο		0.07		V/ C
ON Characteristics					1		,
Gate Threshold Voltage	Gate Threshold Voltage		$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.0		4.0	V
Drain-Source ON-State Resistance		R _{DS(ON)}	$V_{GS} = 10 \text{ V}, I_D = 3.5 \text{ A}$		1.35	1.5	Ω
Forward Transconductance		9 FS	V_{DS} = 40 V, I_{D} = 3.5 A (Note 4)		8.0		S
Dynamic Characteristics			1		1		
Input Capacitance		C_{ISS}			1200	1600	pF
Output Capacitance		Coss	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{MHz}$		150	190	pF
Reverse Transfer Capacitance		C_{RSS}			18	25	pF
Switching Characteristics					•		
Turn-on Delay Time		t _{D(ON)}			35	80	ns
Turn-on Rise Time		t_R	$V_{DD} = 350V, I_D = 7.0 A$		79	165	ns
Turn-off Delay Time		t _{D(OFF)}	(Note 4, 5)		80	160	ns
Turn-off Fall Time		t _F			52	120	ns
Total Gate Charge		Q_G	V _{DS} = 560V, I _D = 7.0A, V _{GS} = 10 V		30		nC
Gate-Source Charge		Q_{GS}	(Note 4, 5)		6.5		nC
Gate-Drain Charge		Q_{DD}	(11010 4, 0)		13		nC

7N70 Power MOSFET

■ ELECTRICAL CHARACTERISTICS(Cont.)

PARAMETER	SYMBOL	TEST CONDITIONS		TYP	MAX	UNIT		
Source- Drain Diode Ratings and Characteristics								
Drain-Source Diode Forward Voltage	V_{SD}	$V_{GS} = 0 \text{ V}, I_S = 7.0 \text{ A}$			1.4	V		
Maximum Continuous Drain-Source Diode Forward Current	Is				7.0	Α		
Maximum Pulsed Drain-Source Diode Forward Current	I _{SM}				28	Α		
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V}, I_S = 7.0 \text{ A},$		320		ns		
Reverse Recovery Charge	Q_{RR}	dI _F /dt = 100 A/μs (Note 4)		2.4		μC		

Notes: 1. Repetitive Rating : Pulse width limited by T_J

- 2. L = 19.5mH, I_{AS} = 7.0A, V_{DD} = 50V, R_G = 0 Ω , Starting T_J = 25°C
- 3. $I_{SD} \le 7.0$ A, di/dt ≤ 100 A/ μ s, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25$ °C
- 4. Pulse Test: Pulse width ≤ 300µs, Duty cycle ≤ 2%
- 5. Essentially independent of operating temperature

■ TEST CIRCUITS AND WAVEFORMS

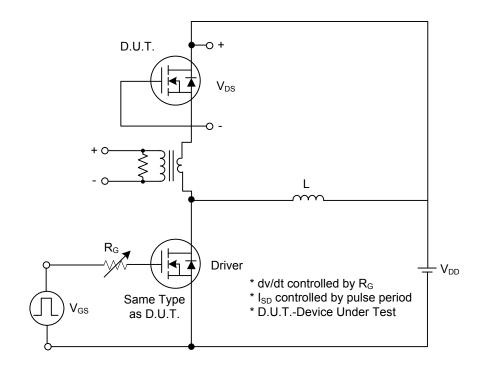


Fig. 1A Peak Diode Recovery dv/dt Test Circuit

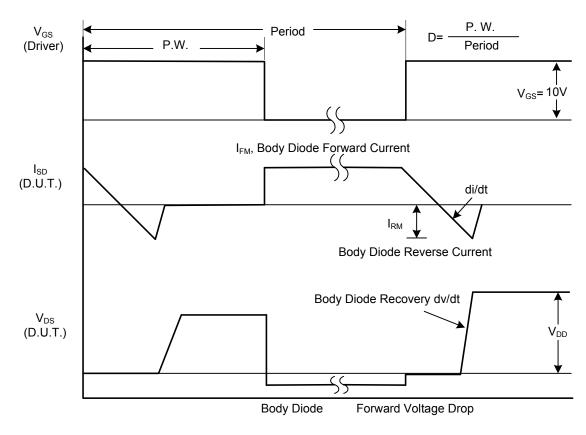
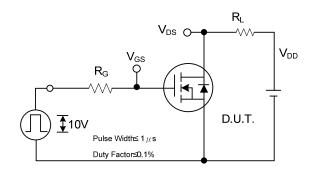



Fig. 1B Peak Diode Recovery dv/dt Waveforms

7N70 Power MOSFET

■ TEST CIRCUITS AND WAVEFORMS (Cont.)

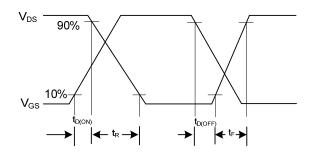
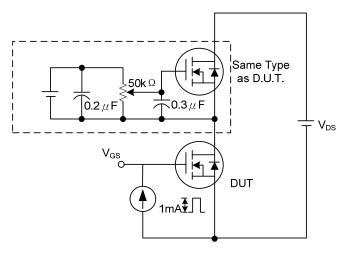



Fig. 2A Switching Test Circuit

Fig. 2B Switching Waveforms

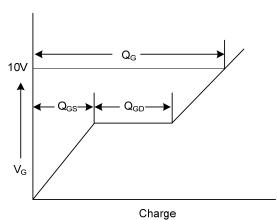
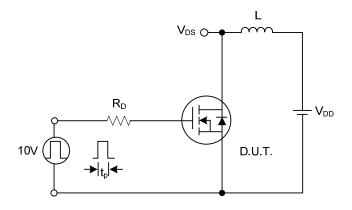



Fig. 3A Gate Charge Test Circuit

Fig. 3B Gate Charge Waveform

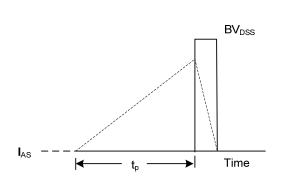
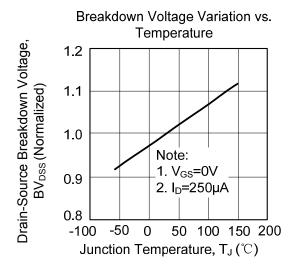
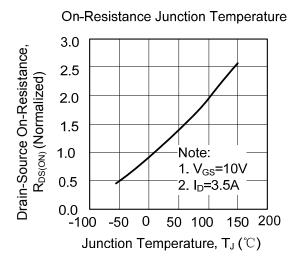
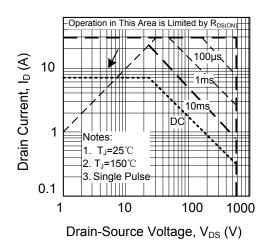
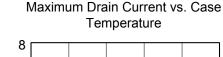
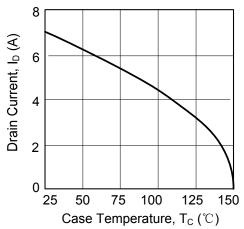




Fig. 4A Unclamped Inductive Switching Test Circuit


Fig. 4B Unclamped Inductive Switching Waveforms

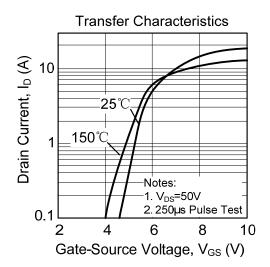

■ TYPICAL CHARACTERISTICS



Maximum Safe Operating Area

On-State Characteristics

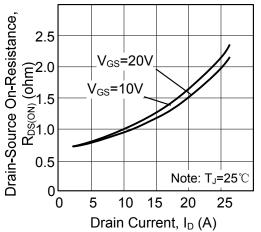
10


Top: $\frac{V_{QS}}{10V}$ Notes:

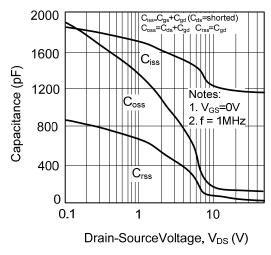
1. 250 μ s Pulse Test

2. T_C =25 °C

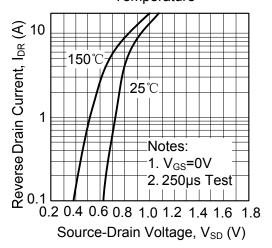
0.1


Drain-to-Source Voltage, V_{DS} (V)

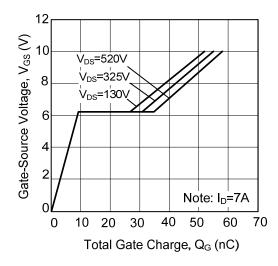
7N70 Power MOSFET

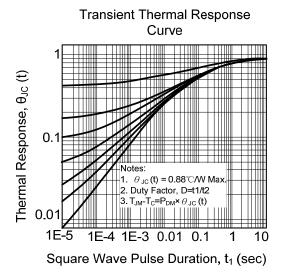

■ TYPICAL CHARACTERISTICS(Cont.)

On-Resistance Variation vs. Drain Current and Gate Voltage



Drain Current, I_D (A)


Capacitance Characteristics (Non-Repetitive)



On State Current vs. Allowable Case Temperature

Gate Charge Characteristics

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.