N-Channel 30-V (D-S) MOSFET #### **CHARACTERISTICS** - N-Channel Vertical DMOS - Macro Model (Subcircuit Model) - Level 3 MOS - Apply for both Linear and Switching Application - Accurate over the -55 to 125°C Temperature Range - Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics #### **DESCRIPTION** The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0-to-5V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage. A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device. ### SUBCIRCUIT MODEL SCHEMATIC This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits. Document Number: 70985 www.vishay.com 17-Apr-01 # **SPICE Device Model Si4416DY** ## **Vishay Siliconix** | SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED) | | | | | |---|---------------------|--|---------|------| | Parameter | Symbol | Test Conditions | Typical | Unit | | Static | | | | | | Gate Threshold Voltage | $V_{GS(th)}$ | $V_{DS} = V_{GS}, I_D = 250 \mu A$ | 1.83 | V | | On-State Drain Current ^a | I _{D(on)} | $V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$ | 361 | Α | | Drain-Source On-State Resistance ^a | 「DS(on) | V _{GS} = 10 V, I _D = 9 A | 0.013 | Ω | | | | V_{GS} = 4.5 V, I_{D} = 7.3 A | 0.021 | | | Forward Transconductance ^a | g _{fs} | V _{DS} = 15 V, I _D = 9 A | 22 | S | | Diode Forward Voltage ^a | V_{SD} | I _S = 2.1 A, V _{GS} = 0 V | 0.8 | V | | Dynamic | | | | | | Total Gate Charge ^b | Qg | V_{DS} = 15 V, V_{GS} = 10 V, I_{D} = 9 A | 24 | nC | | Gate-Source Charge ^b | Q_{gs} | | 6 | | | Gate-Drain Charge ^b | Q_{gd} | | 4 | | | Turn-On Delay Time ^{b, c} | t _{d(on)} | V_{DD} = 15 V, R_L = 15 Ω I_D \cong 1 A, V_{GEN} = 10 V, R_G = 6 Ω I_F = 2.1 A, di/dt = 100 A/ μ s | 18 | ns | | Rise Time ^{b, c} | t _r | | 10 | | | Turn-Off Delay Time ^{b, c} | t _{d(off)} | | 32 | | | Fall Time ^{b, c} | t _f | | 20 | | | Source-Drain Reverse Recovery Time | t _{rr} | | 49 | | a. Pulse test; pulse width ≤ 300 μs, duty cycle ≤ 2% b. Independent of operating temperature c. Include only parasitic components presented in the model circuit www.vishay.com Document Number: 70985 ## Vishay Siliconix ## COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED) Note: Dots and squares represent measured data