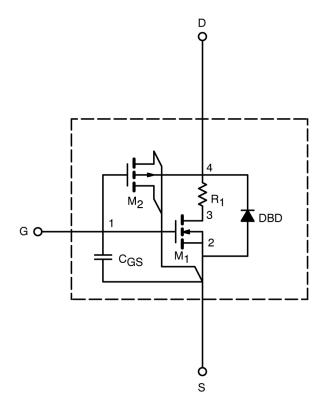




## N-Channel 30-V (D-S) MOSFET

#### **CHARACTERISTICS**

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

#### **DESCRIPTION**

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0-to-5V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched  $C_{\text{gd}}$  model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

### SUBCIRCUIT MODEL SCHEMATIC



This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

Document Number: 70985 www.vishay.com 17-Apr-01

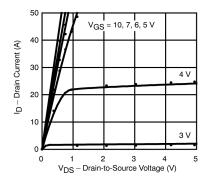
# **SPICE Device Model Si4416DY**

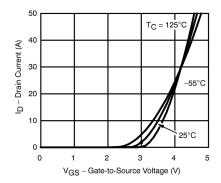
## **Vishay Siliconix**

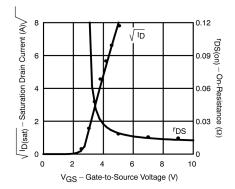


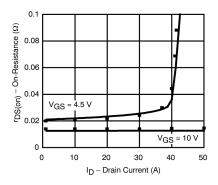
| SPECIFICATIONS (T <sub>J</sub> = 25°C UNLESS OTHERWISE NOTED) |                     |                                                                                                                      |         |      |
|---------------------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------|---------|------|
| Parameter                                                     | Symbol              | Test Conditions                                                                                                      | Typical | Unit |
| Static                                                        |                     |                                                                                                                      |         |      |
| Gate Threshold Voltage                                        | $V_{GS(th)}$        | $V_{DS} = V_{GS}, I_D = 250 \mu A$                                                                                   | 1.83    | V    |
| On-State Drain Current <sup>a</sup>                           | I <sub>D(on)</sub>  | $V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$                                                                      | 361     | Α    |
| Drain-Source On-State Resistance <sup>a</sup>                 | 「DS(on)             | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 9 A                                                                         | 0.013   | Ω    |
|                                                               |                     | $V_{GS}$ = 4.5 V, $I_{D}$ = 7.3 A                                                                                    | 0.021   |      |
| Forward Transconductance <sup>a</sup>                         | g <sub>fs</sub>     | V <sub>DS</sub> = 15 V, I <sub>D</sub> = 9 A                                                                         | 22      | S    |
| Diode Forward Voltage <sup>a</sup>                            | $V_{SD}$            | I <sub>S</sub> = 2.1 A, V <sub>GS</sub> = 0 V                                                                        | 0.8     | V    |
| Dynamic                                                       |                     |                                                                                                                      |         |      |
| Total Gate Charge <sup>b</sup>                                | Qg                  | $V_{DS}$ = 15 V, $V_{GS}$ = 10 V, $I_{D}$ = 9 A                                                                      | 24      | nC   |
| Gate-Source Charge <sup>b</sup>                               | $Q_{gs}$            |                                                                                                                      | 6       |      |
| Gate-Drain Charge <sup>b</sup>                                | $Q_{gd}$            |                                                                                                                      | 4       |      |
| Turn-On Delay Time <sup>b, c</sup>                            | t <sub>d(on)</sub>  | $V_{DD}$ = 15 V, $R_L$ = 15 Ω $I_D$ $\cong$ 1 A, $V_{GEN}$ = 10 V, $R_G$ = 6 Ω $I_F$ = 2.1 A, di/dt = 100 A/ $\mu$ s | 18      | ns   |
| Rise Time <sup>b, c</sup>                                     | t <sub>r</sub>      |                                                                                                                      | 10      |      |
| Turn-Off Delay Time <sup>b, c</sup>                           | t <sub>d(off)</sub> |                                                                                                                      | 32      |      |
| Fall Time <sup>b, c</sup>                                     | t <sub>f</sub>      |                                                                                                                      | 20      |      |
| Source-Drain Reverse Recovery Time                            | t <sub>rr</sub>     |                                                                                                                      | 49      |      |

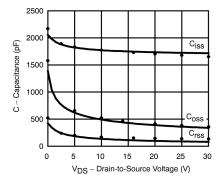
a. Pulse test; pulse width ≤ 300 μs, duty cycle ≤ 2%
b. Independent of operating temperature
c. Include only parasitic components presented in the model circuit

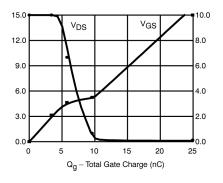

www.vishay.com Document Number: 70985





## Vishay Siliconix


## COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)














Note: Dots and squares represent measured data