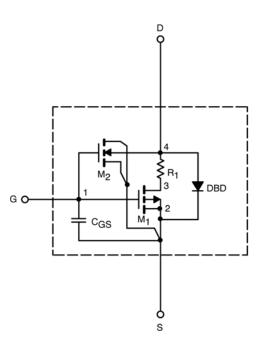


SPICE Device Model Si1305DL Vishay Siliconix

P-Channel 1.8-V (G-S) MOSFET

CHARACTERISTICS

- P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the –55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit model schematic is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0 to -5V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

SUBCIRCUIT MODEL SCHEMATIC

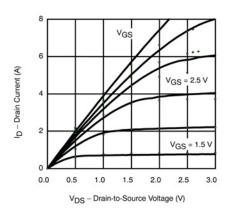
A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

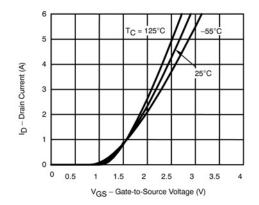
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

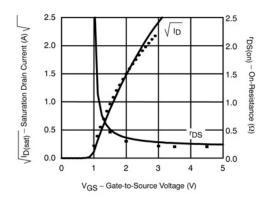
SPICE Device Model Si1305DL Vishay Siliconix

SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)				
Parameter	Symbol	Test Condition	Typical	Unit
Static			•	-
Gate Threshold Voltage	V _{GS(th)}	V_{DS} = V_{GS} , I_D = -250 μ A	0.85	V
On-State Drain Current ^a	I _{D(on)}	V_{DS} = -5 V, V_{GS} = -4.5 V	14	А
Drain-Source On-State Resistance ^a	۲ _{DS(on)}	$V_{GS} = -4.5 \text{ V}, \text{ I}_{D} = -1 \text{ A}$	0.250	Ω
		V_{GS} = -2.5 V, I _D = -0.5 A	0.318	
		V_{GS} = -1.8 V, I _D = -0.3 A	0.420	
Forward Transconductance ^a	g _{fs}	$V_{DS} = -5 V, I_{D} = -1 A$	2.7	S
Diode Forward Voltage ^a	V _{SD}	$I_{\rm S}$ = -1 A, $V_{\rm GS}$ = 0 V	-0.79	V
Dynamic ^b				•
Total Gate Charge ^b	Qg	V_{DS} = -4 V, V_{GS} = -4.5 V, I_D = -1 A	2.2	nC
Gate-Source Charge ^b	Q _{gs}		0.6	
Gate-Drain Charge ^b	Q _{gd}		0.5	
Turn-On Delay Time ^b	t _{d(on)}	V_{DD} = -4 V, R _L = 4 Ω I _D \cong -1 A, V _{GEN} = -4.5 V, R _G = 6 Ω	8	ns
Rise Time ^b	t _r		16	
Turn-Off Delay Time ^b	t _{d(off)}		27	
Fall Time ^b	t _f		8	
Source-Drain Reverse Recovery Time	trr	$I_F = -1 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$	26]

Notes


a. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.

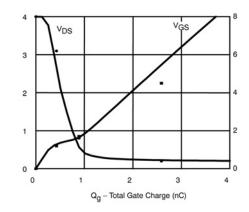

VISHAY



SPICE Device Model Si1305DL Vishay Siliconix

COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)

Ciss


Coss

Crss

8

6

2

4

V_{DS} - Drain-to-Source Voltage (V)

400

300

200

100

0 L

C - Capacitance (pF)