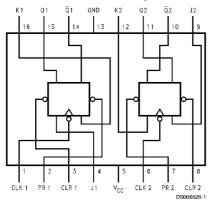


DM7476

Dual Master-Slave J-K Flip-Flops with Clear, Preset, and **Complementary Outputs**

General Description


This device contains two independent positive pulse triggered J-K flip-flops with complementary outputs. The J and K data is processed by the flip-flop after a complete clock pulse. While the clock is low the slave is isolated from the master. On the positive transition of the clock, the data from the J and K inputs is transferred to the master. While the clock is high the J and K inputs are disabled. On the negative transition of the clock, the data from the master is transferred to the slave. The logic state of J and K inputs must not be allowed to change while the clock is high. The data is transfered to the outputs on the falling edge of the clock pulse. A low logic level on the preset or clear inputs will set or reset the outputs regardless of the logic levels of the other inputs.

Features

■ Alternate Military/Aerospace device (5476) is available. Contact a Fairchild Semiconductor Sales Office/Distributor for specifications.

Connection Diagram

Dual-In-Line Package

Order Number 5476DMQB, 5476FMQB, DM5476J, DM5476W or DM7476N See Package Number J16A, N16E or W16A

Function Table

Inputs					Outputs		
PR	CLR	CLK	J	K	Q	Q	
L	Н	Х	Х	Х	Н	L	
Н	L	Х	Х	Х	L	Н	
L	L	Х	Х	Х	Н	Н	
					(Note 1)	(Note 1)	
Н	Н	小	L	L	Q_0	\overline{Q}_{0}	
Н	Н	工	Н	L	Н	L	
Н	Н	ъ.	L	н	L	Н	
Н	Н	7	Н	Н	Toggle		

H = High Logic Level

L = Low Logic Level

X = Either Low or High Logic Level

__ = Positive pulse data. The J and K inputs must be held constant while the clock is high. Data is transfered to the outputs on the falling edge of the clock

Q₀ = The output logic level before the indicated input conditions were estab-

Toggle = Each output changes to the complement of its previous level on each complete active high level clock pulse.

Note 1: This configuration is nonstable; that is, it will not persist when the preset and/or clear inputs return to their inactive (high) level.

Absolute Maximum Ratings (Note 2)

Supply Voltage 7V
Input Voltage 5.5V
Operating Free Air Temperature Range

DM54 and 54 DM74 Storage Temperature Range -55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter Supply Voltage			DM5476			DM7476		
			Min	Nom	Max	Min	Nom	Max	
V _{cc}			4.5	5	5.5	4.75	5	5.25	٧
V _{IH}	High Level Inpu	t Voltage	2			2			V
V _{IL}	Low Level Input Voltage				0.8			0.8	V
I _{OH}	High Level Output Current				-0.4			-0.4	mA
I _{OL}	Low Level Output Current				16			16	mA
f _{CLK}	Clock Frequency (Note 8)		0		15	0		15	MHz
t _w	Pulse Width	Clock High	20			20			
	(Note 8)	Clock Low	47			47			ns
		Preset Low	25			25			
		Clear Low	25			25			
t _{su}	Input Setup Time (Notes 3, 8)		0↑			0↑			ns
t _H	Input Hold Time (Notes 3, 8)		0↓			0↓			ns
T _A	Free Air Operating Temperature		-55		125	0		70	,C

Note 2: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

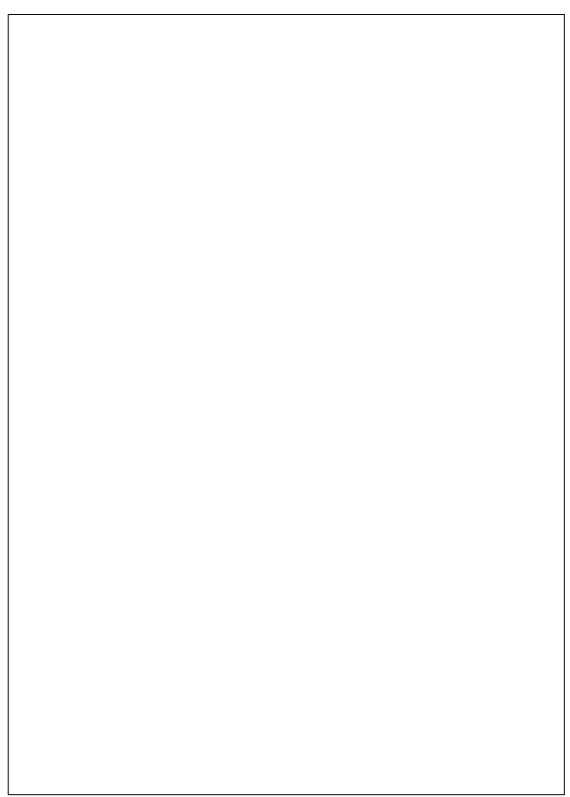
Symbol	Parameter	Conditions		Min	Typ (Note 4)	Max	Units
V _I	Input Clamp Voltage	V _{CC} = Min, I _I :	= –12 mA		(,	-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max		2.4	3.4		V
	Voltage	V _{IL} = Max, V _{IH}	V _{IL} = Max, V _{IH} = Min				
V _{OL}	Low Level Output	V _{CC} = Min, I _{OI}	V _{CC} = Min, I _{OL} = Max		0.2	0.4	V
	Voltage	$V_{IH} = Min, V_{IL}$	= Max				
I _I	Input Current @ Max	V _{CC} = Max, V	= 5.5V			1	mA
	Input Voltage						
I _{IH}	High Level Input	V _{CC} = Max	J, K			40	
	Current	$V_1 = 2.4V$	Clock			80	μΑ
			Clear			80	1
			Preset			80	
I _{IL}	Low Level Input	V _{CC} = Max	J, K			-1.6	
	Current	$V_1 = 0.4V$	Clock			-3.2	mA
		(Note 7)	Clear			-3.2	
			Preset			-3.2	
los	Short Circuit	V _{CC} = Max	DM54	-20		-55	mA
	Output Current	(Note 5)	DM74	-18		-55	
Icc	Supply Current	V _{CC} = Max (N	ote 6)		18	34	mA

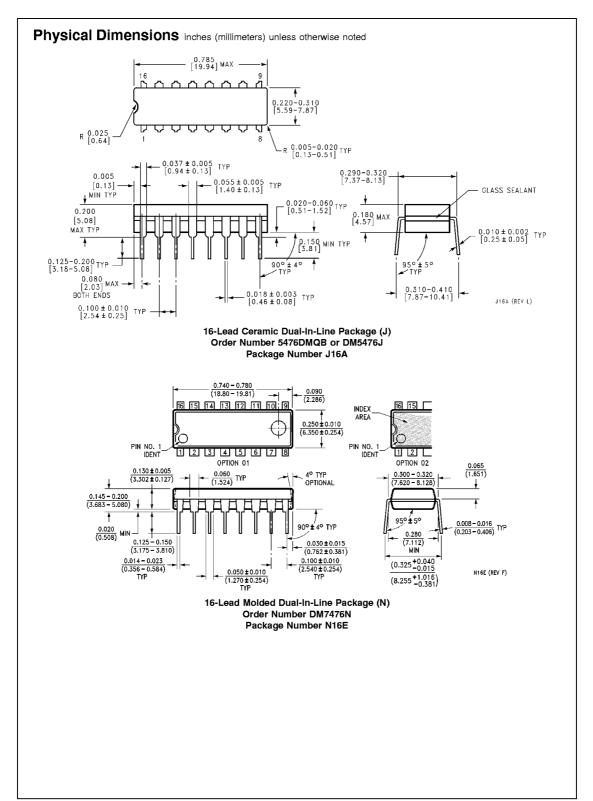
Note 3: The symbol (\uparrow, \downarrow) indicates the edge of the clock pulse is used for reference (\uparrow) for rising edge, (\downarrow) for falling edge.

Note 4: All typicals are at V_{CC} = 5V, T_A = 25°C.

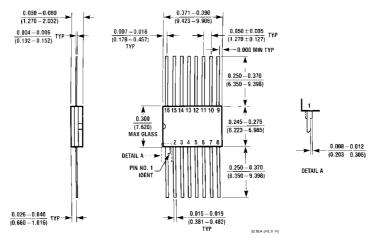
Note 5: Not more than one output should be shorted at a time.

Note 6: With all outputs open, I_{CC} is measured with the Q and \overline{Q} outputs high in turn. At the time of measurement the clock input is grounded.


Note 7: Clear is measured with preset high and preset is measured with clear high.


Electrical Characteristics (Continued)

Note 8: T_A = 25°C and V_{CC} = 5V.


Switching Characteristics at V_{CC} = 5V and T_A = 25°C

		From (Input)	R _L =	Units	
Symbol	Parameter	To (Output)	C _L = 15 pF		
			Min	Max]
f _{MAX}	Maximum Clock		15		MHz
	Frequency				
t _{PHL}	Propagation Delay Time	Preset		40	ns
	High to Low Level Output	to Q			
t _{PLH}	Propagation Delay Time	Preset		25	ns
	Low to High Level Output	to Q			
t _{PHL}	Propagation Delay Time	Clear		40	ns
	High to Low Level Output	to Q			
t _{PLH}	Propagation Delay Time	Clear		25	ns
	Low to High Level Output	to Q			
t _{PHL}	Propagation Delay Time	Clock to		40	ns
	High to Low Level Output	Q or $\overline{\mathbf{Q}}$			
t _{PLH}	Propagation Delay Time	Clock to		25	ns
	Low to High Level Output	Q or $\overline{\mathbf{Q}}$			

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Ceramic Flat Package (W) Order Number 5476FMQB or DM7476W Package Number W16A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation Americas Customer Response Center

Tel: 1-888-522-5372

www.fairchildsemi.com

Fairchild Semiconductor

Fax: +49 (0) 1 80-530 85 86 Fax: +49 (0) 1 80-530 85 86

Email: europe.support@nsc.com

Deutsch Tel: +49 (0) 8 141-35-0

English Tel: +44 (0) 1 793-85-68-56

Italy Tel: +39 (0) 2 57 5631

Fairchild Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd Tsimshatsui, Kowloon

Hong Kong Tel: +852 2737-7200 Fax: +852 2314-0061 National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179