Quad SPST JFET **Analog Switches** ## SW-201/SW-202 #### **FEATURES** #### SW-201 - Normally "ON" for Logic 0 Input - Improved Performance and Pin Compatible With DG-201, LF11201/13201, HI201, and IH201 #### SW-202 - Normally "OFF" For Logic 0 Input - Improved Performance and Pin Compatible With LF11202/12202/13202 and IH202 #### Both SW-201 and SW-202 - **Highly Resistant to Static Discharge Destruction** Guaranteed Break-Before-Make Switching (tope < ton) - Low "ON" Resistance 80Ω Max - Guaranteed Ron Matching 15% Max - Low Row Variation from Analog Input Voltage 5% - High Analog Current Operation 10mA Min - Low Leakage Currents at High Temperatures: - T_A = 125°C 60nA Max - T_A = 85°C 30nA Max - **Guaranteed Switching Speeds:** - t_{ON} = 500ns Max t_{OFF} = 400ns Max - Digital Inputs are TTL and CMOS Compatible - **Dual or Single Supply Operation** - Available in Die Form #### **GENERAL DESCRIPTION** The SW-201 and SW-202 each consist of four independent. single-pole, single-throw (SPST) analog switches, which may be independently digitally controlled. Each SW-201 switch is normally closed (NC), whereas each SW-202 is normally open (NO) when the corresponding digital control input is a zero. The SW-201 and SW-202 are otherwise identical. The judicious combination of bipolar and FET devices in a single monolithic IC results in a product with performance characteristics and ruggedness that are superior to those of a similar circuit fabricated using CMOS technology. Increased reliability is complemented by excellent electrical specifications. Potential error sources are reduced by min-nataShe imizing "ON" resistance and controlling leakage currents at high temperatures. The switching FET exhibits minimal Ron variation over a 20V analog signal range and with power supply voltage changes. Operation from a single positive power supply voltage is possible. With V+=36V, V-=0V, the analog signal range will extend from ground to +32V. The PNP logic inputs are TTL and CMOS compatible. Logic input currents are at micro-ampere levels which improves circuit fan in. ### ORDERING INFORMATION 1 | DIP | SWITCH CON | OPERATING TEMPERATURE | | |--------------|------------|-----------------------|-------| | PACKAGE | NC | NO | RANGE | | 16-PIN EPOXY | SW201GP | SW202GP | XIND | | 16-PIN SOL | SW201GS | SW202GS | XIND | Burn-in is available on commercial and industrial temperature range parts in CerDIP, plastic DIP, and TO-can packages. #### 16-PIN PLASTIC DIP (P-Suffix) His IN, D, 2 **∡** 33 0, D, 2 дтз о, 16-PIN SOL 14 5, S, 3 14 8, (S-Suffix) 73 V+ 13 V+ V- 4 12 M.C. GND 12 N.C. GND S 11 S₃ 11 S, 10 D₃ ենն թ, d√nπ. SW-201 CONTROL LOGIC SW-202 CONTROL LOGIC LOGIC SWITCH LOGIC SWITCH 0 ON 0 OFF OFF ON #### SIMPLIFIED SCHEMATIC DIAGRAM (ONE SWITCH) DataSheethin connections Manufactured under the following patent: 4,228,367 | ARSOL | HITE | MAYI | MIIM R | ATINGS | (Note 1 | ١ | |-------|------|----------|--------|--------|---------|---| | ADJUL | .016 | INIMALII | NUN N | 711100 | 111010 | , | | ADDOPO I P INVANING IN LIV | Till Co (Hote I) | |--|----------------------------------| | Operating Temperature Range | | | | GS40°C to +85°C | | Junction Temperature (T _i) | 65°C to +150°C | | Storage Temperature Range | 65°C to +150°C
65°C to +150°C | | P-Suffix | 65°C to +125°C | | | 60 sec) +300°C | | | re+150°C | | | 36V | | V+ Supply to Ground | 36V | | Logic Input Voltage | (-4V or V-) to V+ Supply | | Analog Input Voltage Range | | | Continuous | V- Supply to V+ Supply + 20V | | 1% Duty Cycle and E
500µsec Pulse
Maximum Current Thro | V- Supply -15\ | / to V+ Su | pply + 20V
30mA | |--|--------------------------|-----------------|--------------------| | PACKAGE TYPE | Θ _{jA} (Note 2) | Θ _{IC} | UNITS | | 16-Pin Plastic DIP (P) | 82 | 39 | •C/W | | 16-Pin SOL (S) | 98 | 30 | •C/W | | NOTES. | | | | - NOTES: - Absolute ratings apply to both DICE and packaged parts, unless otherwise noted. - O_{jA} is specified for worst case mounting conditions, i.e., O_{jA} is specified for dévice in socket for P-DIP package; O_{jA} is specified for dévice soldered to printed circuit board for SOL package. **ELECTRICAL CHARACTERISTICS** at $V\pm=\pm15V$ and $T_A=25^{\circ}$ C, unless otherwise noted. | | | | SW-201G
SW-202G | | | | |---|--|---|--------------------|--------------|-------|-------------------| | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | | | | V _A = 0V, I _S = 1mA | _ | 100 | 150 | _n Data | | "ON" Resistance | R _{ON} | $V_A = \pm 10V$, $I_S = 1 \text{ mA}$ | | 100 | 150 | | | R _{ON} Match Between
Switches | R _{ON} Match | $V_A = 0V$, $I_D = 100 \mu A$;
(Note 1) | | _ | 20 | % | | Analog Voltage Range | VA | I _S = 1.0mA
I _S = 1.0mA (Note 6) | + 10
- 10 | + 11
- 15 | | V | | Analog Current Range | I _A | V _S = ±10V | 5 | 10 | | mA | | ∆R _{ON} vs Applied Voltage | ΔR _{ON} | $V_{S} \le 10V$, $I_{S} = 1mA$ | | 10 | 20 | % | | Source Current in "OFF" Condition | S OFF | $V_S = 10V, V_D = -10V,$ (Note 5) | - | _ | 10 | nA | | Drain Current in "OFF" Condition | I _D OFF | V _S = 10V, V _D = -10V,
(Note 5) | _ | | 10 | n A | | Leakage Current in "ON" Condition | I _{S (ON)} + | $V_S = V_D = \pm 10V$, (Note 5) | | _ | 10 | nA | | Logical "1" Input Current | 1NH | V _{IN} = 2V to 15V, (Note 4) | | | 10 | μΑ | | Logical "0" Input Current | INL | V _{IN} = 0.8 | | 1.5 | 10.0 | μА | | Turn-On-Time | ^t on | See Switching Time Test Circuit, (Note 7) | | 340 | 700 | ns | | Turn-Off-Time | ^t OFF | See Switching Time Test Circuit, (Note 7) | _ | 200 | 500 | ns | | Break-Before-Make Time | t _{ON} -t _{OFF} | (Note 3) | 50 | 140 | _ | ns | | Source Capacitance | C _{S OFF} | V _A = 0V, (Note 5) | | 7 | | pF | | Drain Capacitance | C _{D OFF} | V _A = 0V, (Note 5) | | 5.5 | | pF | | Channel "ON" Capacitance | C _{D:ON:} +
C _{S:ON:} | $V_S = V_D = 0V$, (Note 5) | _ | 15 | _ | pF | | "OFF" Isolation | Iso OFF | $V_S = 5V_{RMS}, R_L = 680\Omega,$
$C_L = 7pF, f = 500kHz, (Note 5)$ | _ | 58 | | dB | | Crosstalk | C _T | $V_S = 5V_{RMS}, R_L = 680\Omega,$
$C_L = 7pF, f = 500kHz, (Note 5)$ | | 70 | | dB | | Positive Supply Current | 1+ | All Channels "ON", (Note 5) | | 4 | 12 | mA | | Negative Supply Current | 1- | All Channels "ON", (Note 5) | | 1 | 6.5 | mA | | Positive Supply Current | 1+ | All Channels "OFF", (Note 5) | _ | 6 | 12 | mA | | Negative Supply Current | 1- | All Channels "OFF", (Note 5) | | 4 | 8 | mA | | ect4U current | IG | All Channels "ON" or "OFF" | _ | 3 | www.I | DataSheet4U.c | | | | | | | | | ### ELECTRICAL CHARACTERISTICS at $V\pm = \pm 15V$; $-40^{\circ}C \le T_A \le +85^{\circ}C$, unless otherwise noted. | | | | SV | W-2010
W-2020 | G | | | |---|-----------------------------------|--|--------------|------------------|------------|-------|-----| | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | | | Temperature Range | TA | Operating | 0 | | 70 | °C | | | "ON" Resistance | R _{ON} | $V_A = 0V$, $I_D = 1 mA$
$V_A = \pm 10V$, $I_D = 1 mA$ | | _ | 175
175 | Ω | | | R _{ON} Match Between
Switches | R _{ON} Match | $V_A = 0V$, $I_D = 100\mu A$;
(Note 1) | - | 10 | _ | % | | | Analog Voltage Range | V _A | I _S = 1.0mA (Note 6)
I _S = 1.0mA | +10
-10 | +11
-15 | | V | | | Analog Current Range | I _A | V _S = ±10.0V | _ | 11 | - | mA | | | △R _{ON} With Applied Voltage | ΔR _{ON} | $V_S \le +10V$ $I_S = 1 \text{ mA}$ | | 15 | _ | % | | | Source Current in | I _S (OFF) | $V_S = 10V$, $V_D = -10V$, (Note 5) $T_A = Max. Operating Temp.$ | _ | _ | 60 | nA | ata | | Drain Current in "OFF" Condition | I _{D (OFF)} | $V_S = 10V$, $V_D = -10V$, (Note 5)
$T_A = Max$. Operating Temp. | | | 60 | nA | | | Leakage Current in "ON" Condition | IS (ON) + | $V_S = V_D = \pm 10V$, (Note 5) $T_A = Max$. Operating Temp. | | | 60 | nA | 5 | | Logical "1" Input Voltage | VINH | (Note 6) | 2 | _ | - | ٧ | | | Logic "0" Input Voltage | V _{INL} | (Note 6) | _ | _ | 8.0 | V | | | Logical "1" Input Current | INH | V _{IN} = 2V to 15V, (Note 4) | | _ | 15 | μА | | | Logical "0" Input Current | I _{INL} | V _{IN} = 0.8 | _ | 5 | 15 | μΑ | | | Turn-On-Time | ^t ON | See Switching Test Circuit,
(Note 2) | _ | _ | 1000 | ns | | | Turn-Off-Time | toff | See Switching Test Circuit,
(Note 2) | | | 500 | ns | | | Break-Before-Make Time | t _{ON} -t _{OFF} | (Note 3) | | 50 | _ | ns | | | Positive Supply Current | 1+ | All Channels "ON", (Note 5) | | _ | 15.8 | mA | | | Negative Supply Current | F | All Channels "ON", (Note 5) | - | _ | 14.5 | mA | | | Positive Supply Current | I+ | All Channels "OFF",
(Note 5) | | | 18 | mA | | | Negative Supply Current | I- | All Channels "OFF", (Note 5) | | | 14.5 | mA | | | Ground Current | l _G | All Channels "ON" or "OFF" | - | _ | 10.0 | mA | | R_{ON1} + R_{ON2} + R_{ON3} + R_{ON4} R_{AVERAGE} = www.DataSheet4U.com DataSheet4U.com ^{1.} $V_A = 0V$, $I_D = 100 \mu A$. Specified as a percentage of $R_{AVERAGE}$ where: ^{2.} Guaranteed by design. ^{3.} Switch is guaranteed by design to provide break-before-make operation. ^{4.} Current tested at $V_{IN} = 2V$. This is worst case condition. ^{5.} Switch being tested ON or OFF as indicated, V_{INH} = 2V or V_{INL} = 0.8V, per logic truth table. ^{6.} Guaranteed by $R_{\mbox{\scriptsize ON}}$ and leakage tests. For normal operation analog signal voltages should be restricted to less than (V+) -4V. ^{7.} Sample tested. #### **DICE CHARACTERISTICS** DIE SIZE 0.101 × 0.097 inch, 9797 sq. mils (2.565 × 2.464 mm, 6.320 sq. mm) 1. IN1 9. IN3 2. D1 10. D3 3. S1 11. S3 4. V-(SUBSTRATE) 13. V+ 5. GND 14. S4 6. S2 15. D4 7. D2 16. IN4 8. IN2 et4U.com ### WAFER TEST LIMITS at V + = 15V, V - = -15V, $T_A = 25$ °C, unless otherwise noted. DataShe | | _ | | SW-201N
SW-202N | SW-201G
SW-202G
LIMIT | UNITS | |------------------------------------|-----------------------|---|--------------------|-----------------------------|--------| | PARAMETER | SYMBOL | CONDITIONS | LIMIT | | | | "ON" Resistance | Ron | $-10V \le V_A \le 10V$, $I_S \le 1mA$ | 80 | 100 | Ω MAX | | R _{ON} Mismatch | R _{ON} Match | V _A = 0V, I _S ≤ 100μA | 15 | 20 | % MAX | | ΔR _{ON} vs V _A | ΔR _{ON} | V _S ≤ 10V, I _S = 1mA | 15 | 20 | % MAX | | Positive Supply | 1+ | (Note 1) | 9 | 10.5 | mA MAX | | Negative Supply Current | I- | (Note 1) DataShoot/ | III com 6 | 7 | mA MAX | | Ground Current | I _G | Bataonect | 4 | 4 | mA MAX | | Analog Voltage Range | V _A | I _S = 1mA (Note 3) | ±10 | ±10 | V MIN | | Logic "1" Input Voltage | V _{INH} | (Note 3) | 2 | 2 | V MIN | | Logic "0" Input Voltage | V _{INL} | (Note 3) | 0.8 | 0.8 | V MAX | | Logic "0" Input Current | I _{INL} | 0V ≤ V _{IN} ≤ 0.8V | 5 | 5 | μΑ ΜΑΧ | | Logic "1" Input Current | I _{INH} | 2V ≤ V _{IN} ≤ 15V, (Note 2) | 5 | 5 | μA MAX | | Analog Current Range | I _A | V _S = ±10V | 10 | 7 | mA MIN | #### NOTE: Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing. ## TYPICAL ELECTRICAL CHARACTERISTICS V+ = 15V, V- = -15V and T_A = 25° C, unless otherwise noted. | SYMBOL | CONDITIONS | SW-201N
SW-202N
TYPICAL | SW-201G
SW-202G
Typical | UNITS | | | | |-----------------------|---|---|--|--|--|--|--| | Ron | -10V ≤ V _A ≤ 10V, I _S ≤ 1mA | 60 | 60 | Ω | | | | | ton | | 340 | 340 | ns | | | | | t _{OFF} | | 200 | 200 | ns | | | | | I _{D (OFF)} | $V_S = 10V, V_D = -10V$ | 0.3 | 0.3 | nA | | | | | I _{SO (OFF)} | $f = 500$ kHz, $R_{L} = 680\Omega$ | 58 | 58 | dB | | | | | C _T | $f = 500$ kHz, $R_L = 680\Omega$ | 70 | 70 | dB | | | | | | R _{ON} ton toff ID (OFF) ISO (OFF) | $\begin{aligned} R_{ON} & -10V \leq V_{A} \leq 10V, I_{S} \leq 1 mA \\ t_{ON} & \\ t_{OFF} & \\ I_{D (OFF)} & V_{S} = 10V, V_{D} = -10V \\ I_{SO (OFF)} & f = 500kHz, R_{L} = 680\Omega \end{aligned}$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | #### NOTES - 1. Power supply and ground current specified for switch "ON" or "OFF". - Current tested at V_{IN} = 2V. This is worst case condition. - DataShee 4 Guaranteed by Ron and leakage tests. www.DataSheet4U.com #### TYPICAL PERFORMANCE CHARACTERISTICS DataShe www.DataSheet4U.com DataSheet4U.com 5 ### TYPICAL PERFORMANCE CHARACTERISTICS ### SW-201 ton/toff SWITCHING RESPONSE TOP TRACE: LOGIC INPUT (5V/DIV) BOTTOM TRACE: SWITCH OUTPUT (1V/DIV) ### SW-202 $t_{\text{ON}}/t_{\text{OFF}}$ SWITCHING RESPONSE TOP TRACE: LOGIC INPUT (5V/DIV) BOTTOM TRACE: SWITCH OUTPUT (1V/DIV) ### **SW-201 WAVEFORMS** #### SWITCHING TIME TEST CIRCUIT #### SW-202 WAVEFORMS ### **CROSSTALK TEST CIRCUIT** www.DataSheet4U.com #### **APPLICATIONS INFORMATION** This analog switch employs ion-implanted JFETs in a switch configuration designed to assure break-before-make action. The turn-off time is much faster than the turn-on time to guarantee this feature over the full operating temperature and input voltage range. Fabricated with Bipolar-JFET processing rather than CMOS, special handling is not necessary to prevent damage to these switches. Because the digital inputs only require a 2V logic "1" input level, power-consuming pullup resistors are not required for TTL compatibility to insure break-before-make switching as is most often the case with CMOS switches. The digital inputs utilize PNP input transistors where input current is maximum at the logic "0" level and drops to that of a reverse-biased diode as the input voltage is raised above ≈ 1.4V. The "ON" resistance, R_{ON}, of the analog switches is constant over the wide input voltage range of -15V to +11V with the total voltage should be restricted to 11V (or 4V less than the positive supply). This assures that the V_{GS} of an OFF switch remains greater than its V_P, and prevents that channel from being falsely turned ON. Individual switches are "ON" without power applied. #### **OPERATION FROM SINGLE POSITIVE POWER SUPPLY** #### **TYPICAL APPLICATIONS** #### PROGRAMMABLE GAIN NONINVERTING AMPLIFIER WITH SELECTABLE INPUTS DataSheet4U.com www.DataSheet4U.com