Tone/Pulse Dialer

Features

- One touch redial operation

■ Tone/Pulse switchable

- 32 digit capacity for redialing
- Automatic mixed redialing (last number redial) of pulse to DTMF with multiple automatic access pauses
■ PABX auto-pause is 2.2 seconds
- DTMF Timing:

Manual dialing: minimum duration for bursts and pauses
Redialing: calibrated timing
■ Hands-Free control function

General Description

The NT91214/15 is a single-chip, silicon gate, CMOS integrated circuit with an on-chip oscillator for a 3.58 MHz crystal or ceramic resonator. It provides a dialing pulse (DP) or dual tone multi-frequency (DTMF) dialing. A standard 4×4 matrix keyboard can be used to support either DP or DTMF modes.

Pin Configurations

a. 16-Pin Package

b. 18-Pin Packages
(i) Key Tone Output

■ Wide operating voltage range: 2 V to 5.5 V
■ Key-in beep tone output
■ Digits dialed manually after redialing are cascadable and stored as additional digits for the next redialing
■ Uses inexpensive ceramic resonator (3.58 MHz)

- Two versions for different telephone systems

■ Built-in power up reset circuit
■ Four extra function keys: flash, pause, redial and DP or

DTMF mixed dialing
■ 4×4 (or 2×8) keyboard can be used
■ Low standby current

Up to 32 digits can be saved in the on-chip RAM for redialing. In the DTMF mode, a short minimum tone duration and minimum intertone pause allows rapid dialing. Maximum tone duration depends on the key depression time during manual dialing.

c. 20-Pin Package
(ii) Hands-Free Control

Keyboard Assignments

1. */T -- In PULSE mode this key works as Pulse \rightarrow DTMF key (T key). In DTMF mode the key works as * key.
*/T key will occupy one memory digit in either use.
2. F1 -- Flash key. The break time is 297 ms or 96 ms (NT91214/15 respectively)
3. F2 -- Flash key for break time 640 ms
4. P -- Pause key (2.2 seconds)
5. RD -- One key redial key
6. \# -- In PULSE mode this key input is neglected. In DTMF mode this key works as \# key.

Block Diagram

Absolute Maximum Ratings*

```
Supply Voltage (VDD). . . . . . . . . . . . . . . . . . . s 6.0V
Input Voltage (Vin) . . . . . .VSS - 0.3V to VDD + 0.3V
Output Voltage (Vout) . . . . VSS - 0.3V to VDD + 0.3V
Output Voltage (Vout)( \overline{DP},\overline{XMIT MUTE ) . . . . s1.2V}
Tone Output Current (Itone) . . . . . . . . . . . . . . }550m\textrm{mA
Power Dissipation (Pd) . . . . . . . . . . . . . . . . . \leq500mW
Operating Temperature (Top). . . . . . -20' C to +70' C
Storage Temperature (Tstg). . . . . . - 40 }\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ to }+15\mp@subsup{0}{}{\circ}\textrm{C
```


*Comments

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to this device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied or intended. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

DC Electrical Characteristics (VDD $=3.5 \mathrm{~V}$, $\mathrm{VSS}=0 \mathrm{~V}$, $\mathrm{Fosc}=3.579 \mathrm{MHz}$, \quad op $=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions		Test KT.		
Operating Voltage	VDD	2.0		5.5	V	PULSE mode		A		
		2.0		5.5		TONE mode				
Memory Retention Voltage	Vmr	1			V			-		
Memory Retention Current	ImR		0.05	0.4	$\mu \mathrm{A}$	$V D D=1.0 \mathrm{~V}, \overline{\mathrm{HK}}=\mathrm{VDD}$ All outputs unloaded		-		
Operating Current	IdDP		0.32	1.0	mA	Pulse mode	All outputs unloaded	A		
	Iddt		0.6	2.0		Tone mode				
Standby Current	Iso		0.03	0.05	$\mu \mathrm{A}$	$\overline{\mathrm{HK}}=\mathrm{VDD}=1.5 \mathrm{~V}$	All outputs unloaded, no key selected	A		
			0.5	10		$\overline{\mathrm{HK}}=\mathrm{VSS}$				
Input Current	Vıн	0.8		1	VDD					
	VIL	0		0.2						
$\overline{\mathrm{R} 1}-\overline{\mathrm{R} 4}$ Input Current	IR		115		$\mu \mathrm{A}$			C		
Tone out Voltage	Voc	584	730	876	mVp-p	Column	$\begin{aligned} & \mathrm{VDD}=3.5 \mathrm{~V} \\ & \mathrm{RL}=5 \mathrm{~K} \end{aligned}$	D		
	Vor	456	570	684		Row				
$\overline{\mathrm{HFI}}$ Pull Low Current	$\mid{ }_{\text {lhFI }}$ \|		5		$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{VDD}=3.5 \mathrm{~V}(\text { Note } 1) \\ & \overline{\mathrm{HFI}} \text { pin connected to } 0 \mathrm{~V} \end{aligned}$		B		

DC Electrical Characteristics (continued)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions	Test KT.
HFO Drive Current	\mid loh1 \mid	0.4	2		$m A$	$\mathrm{VDD}=3.5 \mathrm{~V}$ $\mathrm{VoH}=\mathrm{VDD}-0.4 \mathrm{~V}$	B
HFO, KT, MODEOUT XMITMUTE Sink Current	loL1	0.9	5.3		mA	$\mathrm{VDD}=3.5 \mathrm{~V}$ $\mathrm{VoL}=0.4 \mathrm{~V}$	B
$\overline{\mathrm{DP}}$ Sink Current	loL2	1.1	5.3		mA	$\mathrm{VDD}=3.5 \mathrm{~V}, \mathrm{VoL}=0.4 \mathrm{~V}$	B
Distortion	DIS\%		1	5	$\%$	$*$ see note below	

* Note: $\quad \mathrm{DIS} \%=\frac{100 *\left(\mathrm{~V}_{1}{ }^{2}+\mathrm{V}_{2}{ }^{2}+\ldots+\mathrm{V}^{2}\right)^{1 / 2}}{\left(\mathrm{VILI}^{2}+\mathrm{V}_{1{ }^{2}}\right)^{1 / 2}}$

1. $\mathrm{V}_{1} . \ldots \mathrm{V}_{\mathrm{n}}$ are the intermodulation or the harmonic frequencies in the 500 Hz to 3400 Hz band.
2. Vil and $V_{I H}$ are the individual frequency components of the DTMFsignal.

AC Characteristics (VDD $=3.5 \mathrm{~V}, \mathrm{VSS}=0 \mathrm{~V}, \mathrm{Fosc}=3.579 \mathrm{MHz}, \mathrm{Top}=25^{\circ} \mathrm{C}$, unless otherwise specified.)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions	
Make Time	Тм		33.3		ms	10pps	$M / B=1 / 2$
			40.0				$M / B=2 / 3$
			16.7			20pps	$M / B=1 / 2$
			20.0				$M / B=2 / 3$
Break Time	Тв		66.6		ms	10pps	$M / B=1 / 2$
			60.0				$M / B=2 / 3$
			33.3			20pps	$M / B=1 / 2$
			30.0				$M / B=2 / 3$
Inter-digit Pause Time	TIDP		824		ms	10pps	
			458			20pps	
Pause Time	Tpau		2.2		sec		

AC Characteristics (continued)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions
Auto-redial Break Time	TAовк		2.2		sec	* Optional
Delay time Key valid to Signal Out	Td		0		ms	
Key-in Debounce	Tкд		21		ms	
Key Release Debounce Time	Tкцd		5.2		ms	
Key-in Tone Duration	Tктd		23		ms	
Key-in Tone Frequency	Fкт		437		Hz	
Minimum Tone Duration Time	Tмғd		94		ms	
Min. Tone Inter-digit Pause	Tтірр		96		ms	
Redial Tone Duration	Tмғdr		94		ms	
Redial Tone Inter-digit Duration	TтіррR		96		ms	

Comparisons of Specified vs. Actual Tone Frequencies

\mathbf{R} / \mathbf{C}	Spec.	Actual	Error (\%)	Unit	Conditions
$\overline{\mathrm{R} 1}$	697	699.1	+0.31	Hz	
$\overline{\mathrm{R} 2}$	770	771.5	+0.19	Hz	
$\overline{\mathrm{R} 3}$	852	852.3	+0.03	Hz	
$\overline{\mathrm{R} 4}$	941	942.0	+0.10	Hz	
$\overline{\mathrm{C} 1}$	1,209	$1,215.7$	+0.57	Hz	
$\overline{\mathrm{C} 2}$	1,336	$1,331.7$	-0.32	Hz	
$\overline{\mathrm{C} 3}$	1,477	$1,471.9$	-0.35	Hz	

Pin Descriptions

Pin Descriptions (continued)

Pin No.				Designation	I/O	Description
NT91215A NT91214A	NT91215B NT91214B	NT91215C NT91214C	$\begin{aligned} & \text { NT91215D } \\ & \text { NT91214D } \end{aligned}$			
1	1	2	2	$\overline{H K}$	1	Hook switch input This inverter input pin detects the state of the hook switch contact. "Off Hook" is represented by a VSS condition. "On Hook" is represented by a VDD condition.
(N.A.)	10	(N.A.)	11	$\overline{\mathrm{KT}}$	0	Key-in tone output This N-channel open drain pin sends out a "beep" tone for each PULSE mode key entry, along with entries of accepted function keys (RD, T, F1 F2, and P keys). The tone output frequency is 437 Hz and tone duration is 23 ms .
9	11	10	12	$\overline{\text { DP }}$	0	Dialing pulse output This is an N-channel open drain output. The normal output will be "ON" during break and "OFF" during make in the PULSE DIALING mode.

Pin Descriptions (continued)

Pin No.				Designation	I/O	Description
NT91215A NT91214A	NT91215B NT91214B	NT91215C NT91214C	NT91215D NT91214D			
(N.A.)	(N.A.)	1	1	HFO	O	Hands-Free Control I/O pins These pins enable and disable the HandsFree control function. When input pin HFI goes low, the Hands-Free Control state is toggled on. The status of the Hands-Free control state is listed in the following table:
						Current State Next State
						$\begin{array}{c}\text { Hook } \\ \text { sw. }\end{array}$ HFO Input HFO Dialing?
						Low $\overline{\mathrm{HFI}}^{-}$High Yes
		18	20	$\overline{\mathrm{HFI}}$	1	
						Off Hook High ${\underset{L}{\text { HFI }}{ }^{-}-}^{\square}$
						$\begin{gathered}\text { On } \\ \text { Hook }\end{gathered} \quad-\quad \begin{gathered}\text { Off } \\ \text { Hook }\end{gathered}$
						Off Hook
7	7	8	8	TONE	0	Tone dialing output When a valid keypress is detected in the DTMF mode, appropriate low group and high group, frequencies are generated which hybridizes the dual tone output. TONE output is in the "OFF" state in PULSE mode.

Pin Descriptions (continued)

Pin No.				Designation	1/0	Description
NT91215A NT91214A	NT91215B NT91214B	NT91215C NT91214C	NT91215D NT91214D			
8	8	9	9	$\overline{\text { XMITMUTE }}$	0	Dialing transmission mute output This is an N -channel open drain output The XMITMUTE is normally "OFF" During pulse of DTMF dialing this output is "ON".
(N.A.)	9	(N.A.)	10	MODE OUT	0	Mode output pin This is an N-channel, open drain output It is "ON" during tone output and "OFF" during pulse output.
13	15	14	16	$\overline{\mathrm{R} 1}$		Keyboard pins
14	16	15	17	$\overline{\mathrm{R} 2}$		This input serves as the interface to an XY matrix keyboard. On a 4×4 matrix
15	17	16	18	$\overline{\mathrm{R} 3}$		column, $\overline{\mathrm{C} 4}$, should be connected to
16	18	17	19	$\overline{\mathrm{R4}}$		
10	12	11	13	$\overline{\mathrm{C} 1}$		
11	13	12	14	$\overline{\mathrm{C} 2}$		
12	14	13	15	$\overline{\mathrm{C}}$		
6	6	7	7	VDD		Power supply pins
5	5	6	6	VSS		These devices are designed to operate from 2.0 V to 5.5 V .

Operating Procedures

Symbol Definitions:

In the description below, signals are defined in terms of the key or switch which is activated.

OFF Hook means the phone is off the hook.
On Hook means that the phone is on the hook.
D1 represents for the first digit dialed in a string of digits.

Dn (Dk) represents for the last digit dialed in a string of digits.
$\mathrm{Dn}+1$ represents for the beginning of a new string of digits.

Dn +m represents for the last digit in a new string of digits.
$\overline{\mathrm{HFI}} \downarrow$ represents for the switch that activates the HANDS-FREE DIALING mode going low
*/T is the Pulse-to-DTMF key
RD is the Redial key.
0 is the Zero key.
P is the Pause key.
F is the Flash key.

Recommended Operation:

1. PULSE mode operation
a.

PULSE mode is defined as the INITIAL mode, provided
the first keyboard input is not the ${ }^{*} / \mathrm{T}$ key following
the Off Hook condition and the mode selection pin is
floating (MODE $I N=$ VDD or floating).
b. On Hook $\overline{\mathrm{HFI}} \downarrow \mathrm{D} 1 \ldots \mathrm{Dn}$

Pulse mode is defined as the INITIAL mode, provided the key input D1 is not | |
| :---: |
| D $/ T$ |
| while the mode | selection pin is VDD or floating. The chip will pause for 824 ms automatically after it detects an Off Hook condition or if the $\overline{\mathrm{HFI}} \downarrow$ key is depressed. It then proceeds with pulse or DTMF dialing if any keys have been depressed.

The dialing rate or make/break ratio is decided at the first key entry by checking the MODE IN status and will
not be altered. The MODE IN status can only switch the DIALING mode from PULSE to DTMF after the first
key entry.
2. DTMF mode operation
a.
 D1 ... Dn

DTMF mode is defined as the INITIAL mode if the mode selection pin MODE IN is VSS.
b. Off Hook */T D1 ... Dr or On Hook

The INITIAL mode is PULSE mode if the mode selection pin, MODE IN, is VDD or floating. The $* / T$ key can switch the DIALING mode to TONE mode. Unlike NORMAL mode switching, he */T key entry,
as the first key pressed, will not produce any pause time. There are only 31 digits of redial memory available in the buffer to be used for operations a and b, since the mode switching key, ${ }^{*} / \mathrm{T}$, will occupy one digit of space.
3. Manual dialing with automatic access pause
a.

pause key entries can be accepted and stored in the redial memory. Each is stored as a digit.

Each key-in will provide a pause of 3.57 seconds, depending on which model is being used.
4. Redial
a. On Hook RD or On Hook $\overline{\mathrm{HFI}}$ RD Up to 32 digits (in PULSE mode) or 31 digits (in TONE mode) can be dialed using the $R D$ key. The RD key is disabled while PULSE or TONE signals are being transmitted. Redial will also be inhibited if the last number dialed exceeds 32 digits because the redial memory can only hold 32 digits.
b.

After pressing the RD key, digits may be added to the number in redial memory. When finished dialing, the redial memory will contain the original digits, plus the digits dialed after pressing RD. Each time the redial key is pressed, the stored number will be dialed exactly the same as it was previously, regardless of the status of the MODE IN pin.
5. TONE/PULSE switching operation
a.

The mode selection pin is alwsys checked for TONE or PULSE mode key entry. Dialing can be switched from PULSE to TONE mode, but not from TONE to PULSE mode. Switching the MODE IN pin to the original digits plus the digits dialed after pressing will cause the chip to store a $\quad * / \mathrm{T}$ digit prior to the first tone digit in the redial memory and will automatically insert a 2.2 second pause before the tone digits are dialed out. After the mode bas been switched, the status of the mode selection pin will no longer be checked. Therefore, it will not be possible to switch from TONE to PULSE mode.

PULSE mode is initially defined with the mode selection pin, MODE IN, equal to VDD or floating. At this time, the mode can be switched to DTMF by pressing the $/ \mathrm{T}$ key. DTMF mode will being as soon as the last pulse has been transmitted. In this mode, Dn +1 through $D n+m$ are sent through the TONE OUT pin as DTMF signals. If a P key entry is Contained in the series of digits before or after the */T entry, or the MODE IN switch is depressed, 2.2 second
pause will be added to the automatically inserted pause time, which is also 3.57 seconds. Both of the
above switching modes can store as many as 31 digits
in the redial memory.
6. One-key redialing

| Off Hook D1 \ldots Dn | RD or On Hook $\overline{\mathrm{HFI}} \downarrow$ |
| :--- | :--- | :--- | :--- | D1 ... Dn RD

If the dialing of D1 to Dn is finished, pressing RD will cause the pulse dialing pin to go low for 1.67 seconds of break time and an 824 ms pause will automatically be added. If the pulses of the number dialed with D1 to Dn have not finished, the pressing of the redial key will be ignored.
7. Flash dialing

The flash keys emulate quick On-Off Hook operations.
Pressing the flash keys, F 1 or F 2 , will cause a
break of 96 ms or 640 ms (or, 297 ms or 640 ms , depending on the model) on the $\overline{\mathrm{DP}}$ output pin. Then, it pauses for 824 ms and continues dialing the digits, D1 to Dn. These digits are then stored in the redial memory.

Each time the flash key is pressed, the redial memory will
be cleared to store a new entry. In addition, the MODE IN
status will be checked again for the setting of the TONE/PULSE DIALING mode.

Similarly, to make sure that the IC is working properly, new flash key inputs will be ignored as long as the digits that were dialed have not finished.

Timing Waveforms

1. Timing Waveform in PULSE Mode:

Td: Delay time of Key valid to dialing signal out, typically 0ms
Tidp: Inter-digit pause time
Ткто: Key-in tone duration
Tкд: Debouncing time
Note: " $\overline{H K}$ " or "HFO" indicates chip works when hook switch " $\overline{H K}$ " goes low or Hands-Free control output HFO goes high.

Timing Waveforms (continued)

2. Timing Waveform in TONE Mode:

(i) Normal Dialing

(ii) After (i), Redialing

Timing Waveforms (continued)

3. Timing waveform for SWITCHING Mode Operation:

(i) By mode selection pin switches

(ii) By */T key entry

Tpau: Pause time (2.2 secs)

Timing Waveforms(continued)

4. One Key Redial (DTMF mode used as example):

Таовк: Break time (2.2 secs)
5. Flash Dialing (DTMF mode used as example):

Tfsh: flash time 96 or 640 ms (F1 or F2 respectively) for NT91215
flash time 297 or 640 ms (F1 or F2 respectively) for NT91214

Application Circuit (for reference only)

Test Circuits

(C)

(B)

(D)

OSCILLOSCOPE: TEKTRONI X 468 SPECTURM ANALYZER: HP3585A

Ordering Information

Part No.	Key Tone	Hands-Free Control	Dial Rate	M/B Ratio	Flash		Package
					F1	F2	
NT91214A	N.A.	N.A.	10/20pps	1/2	297 ms	640 ms	16L DIP
NT91214B	A	N.A.					18L DIP
NT91214C	N.A.	A					18L DIP
NT91214D	A	A					20L DIP
NT91215A	N.A.	N.A.	10pps	$\begin{gathered} 1 / 2 \\ 2 / 3 \text { selectable } \end{gathered}$	96 ms	640 ms	16L DIP
NT91215B	A	N.A.					18L DIP
NT91215C	N.A.	A					18L DIP
NT91215D	A	A					20 LDIP

Package Information

DIP 16L Outline Dimensions unit: inches/mm

Symbol	Dimensions in inches	Dimensions in mm
A	0.175 Max .	4.45 Max.
A1	0.010 Min.	0.25 Min.
A2	0.130 ± 0.010	3.30 ± 0.25
B	$\begin{array}{r} 0.018+0.004 \\ -0.002 \end{array}$	$\begin{array}{r} 0.46+0.10 \\ -0.05 \end{array}$
B1	$\begin{array}{r} 0.060+0.004 \\ -0.002 \end{array}$	$\begin{gathered} 1.52+0.10 \\ -0.05 \end{gathered}$
C	$\begin{gathered} 0.010+0.004 \\ -0.002 \end{gathered}$	$\begin{gathered} 0.25+0.10 \\ -0.05 \end{gathered}$
D	0.750 Typ. (0.770 Max.)	19.05 Typ. (19.56 Max.)
E	0.300 ± 0.010	7.62 ± 0.25
E1	0.250 Typ. (0.262 Max.)	6.35 Typ. (6.65 Max.)
e_{1}	0.100 ± 0.010	2.54 ± 0.25
L	0.130 ± 0.010	3.30 ± 0.25
α	$0^{\circ} \sim 15^{\circ}$	$0^{\circ} \sim 15^{\circ}$
e_{A}	0.345 ± 0.035	8.76 ± 0.89
S	0.040 Max.	1.02 Max.

Notes:

1. The maximum value of dimension D includes end flash.
2. Dimension E1 does not include resin fins.
3. Dimension S includes end flash.

Package Information

DIP 18L Outline Dimensions unit: inches/mm

Symbol	Dimensions in inches	Dimension in mm
A	0.175 Max.	4.45 Max.
A1	0.010 Min.	0.25 Min.
A2	0.130 ± 0.010	3.30 ± 0.25
B	$\begin{array}{r} 0.018+0.004 \\ -0.002 \end{array}$	$\begin{gathered} 0.46+0.10 \\ -0.05 \end{gathered}$
B1	$\begin{array}{r} 0.060+0.004 \\ -0.002 \end{array}$	$\begin{gathered} 1.52+0.10 \\ -0.05 \end{gathered}$
C	$\begin{array}{r} 0.010+0.004 \\ -0.002 \end{array}$	$\begin{gathered} 0.25+0.10 \\ -0.05 \end{gathered}$
D	0.900 Typ. (0.920 Max.)	22.86 Typ. (23.37 Max.)
E	0.300 ± 0.010	7.62 ± 0.25
E_{1}	0.250 Typ. (0.262 Max.)	6.35 Typ. (6.65 Max.)
e_{1}	0.100 ± 0.010	2.54 ± 0.25
L	0.130 ± 0.010	3.30 ± 0.25
α	$0^{\circ} \sim 15^{\circ}$	$0^{\circ} \sim 15^{\circ}$
$\mathrm{e}_{\text {A }}$	0.345 ± 0.035	8.76 ± 0.89
S	0.055 Max.	1.40 Max.

Notes:

1. The maximum value of dimension D includes end flash.
2. Dimension E1 does not include resin fins.
3. Dimension S includes end flash.

Package Information

DIP 20L Outline Dimensions unit: inches/mm

Symbol	Dimensions in inches	Dimensions in mm
A	0.175 Max.	4.45 Max.
A1	0.010 Min.	0.25 Min.
A2	0.130 ± 0.010	3.30 ± 0.25
B	$\begin{array}{r} 0.018+0.004 \\ -0.002 \end{array}$	$\begin{gathered} 0.46+0.10 \\ -0.05 \end{gathered}$
B1	$\begin{array}{r} 0.060+0.004 \\ -0.002 \end{array}$	$\begin{gathered} 1.52+0.10 \\ -0.05 \end{gathered}$
C	$\begin{array}{r} 0.010+0.004 \\ -0.002 \end{array}$	$\begin{gathered} 0.25+0.10 \\ -0.05 \end{gathered}$
D	1.026 Typ. (1.046 Max.)	26.06 Typ. (26.57 Max.)
E	0.300 ± 0.010	7.62 ± 0.25
E1	0.250 Typ. (0.262 Max.)	6.35 Typ. (6.65 Max.)
e_{1}	0.100 ± 0.010	2.54 ± 0.25
L	0.130 ± 0.010	3.30 ± 0.25
α	$0^{\circ} \sim 15^{\circ}$	$0^{\circ} \sim 15^{\circ}$
$\mathrm{e}_{\text {A }}$	0.345 ± 0.035	8.76 ± 0.89
S	0.078 Max.	1.98 Max.

Notes:

1. The maximum value of dimension D includes end flash.
2. Dimension E_{1} does not include resin fins.
3. Dimension S includes end flash.
