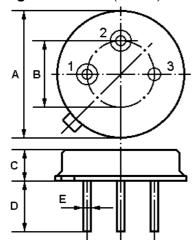


Approved by:
Checked by:
Issued by:

SPECIFICATION


PRODUCT: SAW RESONATOR

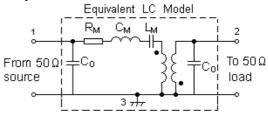
MODEL: HB868.3 TO-39

HOPE MICROELECTRONICS CO.,LIMITED

The HB868.3 is a two-port, 180° surface-acoustic-wave (**SAW**) resonator in a low-profile metal **TO-39** case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at **868.300** MHz.

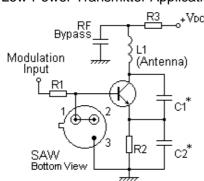
1.Package Dimension (TO-39)

2.Marking

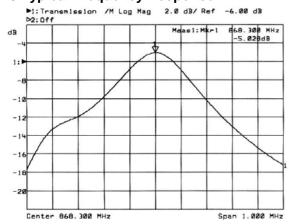

HB868.3

Color: Black or Blue

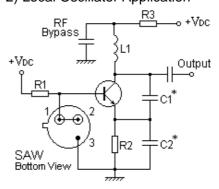
Pin Configuration 1 Input / Output 2 Output / Input 3 Case Ground

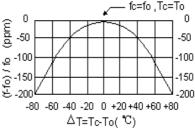

Dimension	Data (unit: mm)		
А	9.30±0.20		
В	5.08±0.10		
С	3.40±0.20		
D	3±0.20 / 5±0.20		
Е	0.45±0.20		

3. Equivalent LC Model and Test Circuit



4.Typical Application Circuits


1) Low-Power Transmitter Application


5. Typical Frequency Response

2) Local Oscillator Application

6.Temperature Characteristics

The curve shown above accounts for resonator contribution only and does not include LC component temperature characteristics.

7.Performance

7-1.Maximum Ratings

Rating	Value	Unit	
CW RF Power Dissipation	Р	10	dBm
DC Voltage Between Any Two Pins	$V_{ m DC}$	±30	V
Storage Temperature Range	$T_{ m stg}$	-40 to +85	$^{\circ}$
Operating Temperature Range	T_{A}	-10 to +60	$^{\circ}$

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency (+25°C)	Absolute Frequency	f _C	868.150		868.450	MHz
	Tolerance from 868.300 MHz	Δf_C		±150		kHz
Insertion Loss		IL		6.0	8.0	dB
Quality Factor	Unloaded Q	Q _U		5,400		
	50 Ω Loaded Q	Q _L		2,700		
Temperature Stability	Turnover Temperature	To	25		55	°C
	Turnover Frequency	f _O		fc		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/°C²
Frequency Aging Absolute Value during the First Year		f _A		≤10		ppm/yr
DC Insulation Resistance Between Any Two Pins			1.0			ΜΩ
RF Equivalent RLC Model	Motional Resistance	R _M		99.5	151	Ω
	Motional Inductance	L _M		98.7819		μН
	Motional Capacitance	См		0.3405		fF
	Shunt Static Capacitance	Co	2.20	2.50	2.80	pF

(i) CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

2003. All Rights Reserved.

- The frequency f_C is the frequency of minimum IL with the resonator in the specified test fixture in a 50 Ω test system with VSWR \leq 1.2:1. Typically, $f_{OSCILLATOR}$ or $f_{TRANSMITTER}$ is less than the resonator f_C .
- 2. Unless noted otherwise, case temperature $T_C = +25^{\circ}C \pm 2^{\circ}C$.
- Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_C , may be calculated from: $f = f_0 [1 FTC (T_0 T_C)^2]$. Typically, oscillator T_0 is 20° less than the specified resonator T_0 .
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capacitance between either Pin 1 and ground or Pin 2 and ground. The measurement includes case parasitic capacitance.
- 6. Derived mathematically from one or more of the following directly measured parameters: f_C , IL, 3 dB bandwidth, f_C versus T_C , and C_0 .
- The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery, please contact our sales offices or e-mail sales@ndsaw.com.