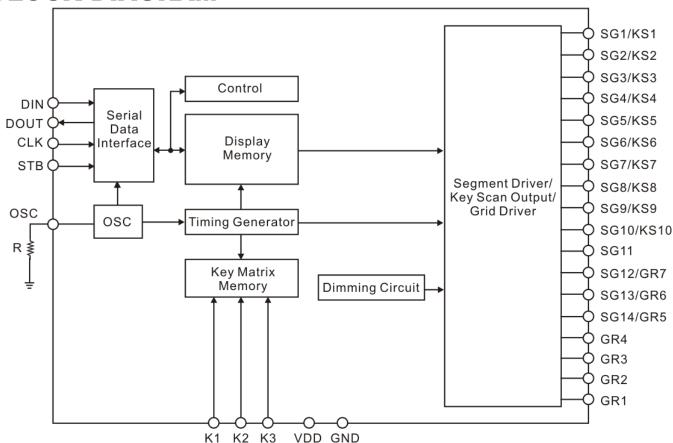
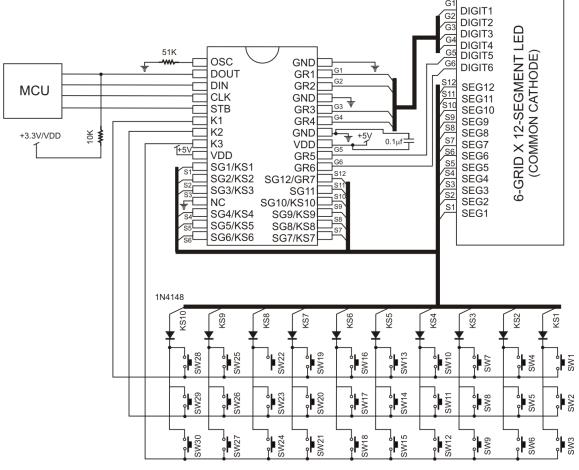
DESCRIPTION

PT6963 is an LED Controller driven on a 1/5 to 1/8 duty factor. 11 segment output lines, 4 grid output lines, 3 segment/grid output lines, one display memory, control circuit, key scan circuit are all incorporated into a single chip to build a highly reliable peripheral device for a single chip microcomputer. Serial data is fed to PT6963 via a four-line serial interface. Housed in a 32-pin SOP, PT6963 pin assignments and application circuit are optimized for easy PCB Layout and cost saving advantages.

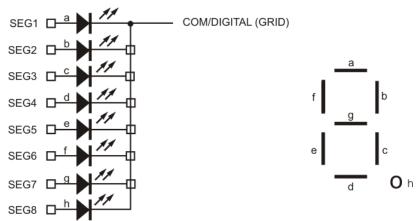

APPLICATIONS

- Micro-computer Peripheral Device
- VCR set
- Combo set


FEATURES

- CMOS technology
- Low power consumption
- Multiple display modes (14 segment, 4 Grid to 11 segment, 7 Grid)
- Key scanning (10 x 3 Matrix)
- 8-Step dimming circuitry
- Serial interface for Clock, Data Input, Data Output, Strobe Pins and low voltage operation ability when user's MCU power supply is 3.3V.
- Available in 32-pin, SOP

BLOCK DIAGRAM


APPLICATION CIRCUIT

Notes:

- 1. The capacitor (0.1µF) connected between the GND and the VDD pins must be located as close as possible to the PT6963 chip.
- 2. It is strongly suggested that the NC pin (pins 13) be connected to the GND.
- 3. The PT6963 power supply is separate from the application system power supply.

COMMON CATHODE TYPE LED PANEL

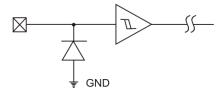
V1.3 2

ORDER INFORMATION

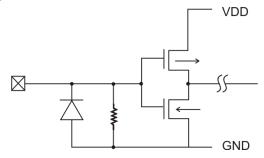
Valid Part Number	Package Type	Top Code
PT6963-S	32pins, SOP, 300mil	PT6963-S

PIN DESCRIPTION

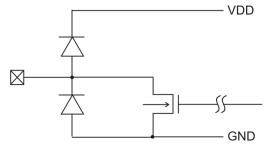
	0		I	
osc 🖸			32	GND
DOUT 2			31	GR1
DIN 3			30	GR2
CLK 🛚			29	GND
STB 📑			28	GR3
K1 6			27	GR4
K2 7			26	GND
K3 🛭		PT6963	25	VDD
VDD 🔄		1 10000	24	SG14/GR5
SG1/KS1 1	5		23	SG13/GR6
SG2/KS2 1	1		22	SG12/GR7
SG3/KS3 1	2		21	SG11
NC 1	3		20	SG10/KS10
SG4/KS4 1	4		19	SG9/KS9
SG5/KS5 1	5		18	SG8/KS8
SG6/KS6 1	6		17	SG7/KS7
			 I	

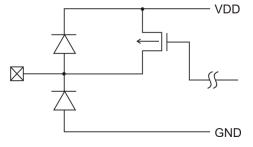

PIN DESCRIPTION

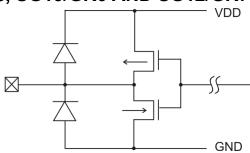
Pin Name	I/O	Description	Pin No.
osc	I	Oscillator Input Pin A resistor is connected to this pin to determine the oscillation frequency	1
DOUT	0	Data Output Pin (N-Channel, Open-Drain) This pin outputs serial data at the falling edge of the shift clock.	2
DIN	I	Data Input Pin This pin inputs serial data at the rising edge of the shift clock (starting from the lower bit)	3
CLK	I	Clock Input Pin This pin reads serial data at the rising edge and outputs data at the falling edge.	4
STB	I	Serial Interface Strobe Pin The data input after the STB has fallen is processed as a command. When this pin is "HIGH", CLK is ignored.	5
K1 ~ K3	I	Key Data Input Pins The data sent to these pins are latched at the end of the display cycle. (Internal Pull-Low Resistor)	6, 7, 8
VDD	-	Power Supply	9, 25
SG1/KS1 ~ SG10/KS10	0	Segment Output Pins (p-channel, open drain) Also acts as the Key Source	
NC	-	No Connection	13
SG11	O Segment Output pins (P-Channel, open drain)		21
SG12/GR7 ~ SG14/GR5	0	Segment / Grid Output Pins	
GND	-	Ground Pin	
GR4 ~ GR1	0	Grid Output Pins	27, 28, 30, 31


INPUT/OUTPUT CONFIGURATIONS

The schematic diagrams of the input and output circuits of the logic section are shown below.


INPUT PINS: CLK, STB & DIN


OUTPUT PINS: K1 TO K3

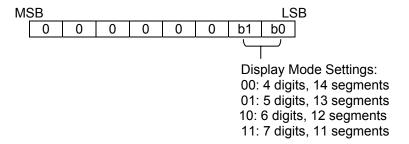

OUTPUT PINS: DOUT, GR1 TO GR4

OUTPUT PINS: SG1 TO SG11

OUTPUT PINS: SG14/GR5, SG13/GR6 AND SG12/GR7

FUNCTION DESCRIPTION

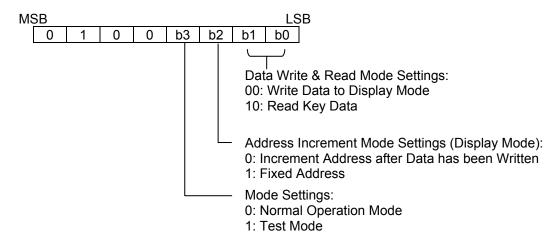
COMMANDS


A command is the first byte (b0 to b7) inputted to PT6963 via the DIN Pin after STB Pin has changed from HIGH to LOW State. If for some reason the STB Pin is set to HIGH while data or commands are being transmitted, the serial communication is initialized, and the data/commands being transmitted are considered invalid.

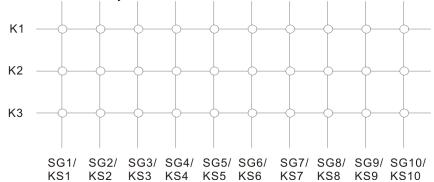
COMMANDS 1: DISPLAY MODE SETTING COMMANDS

PT6963 provides 4 display mode settings as shown in the diagram below: As stated earlier a command is the first one byte (b0 to b7) transmitted to PT6963 via the DIN Pin when STB is LOW. However, for these commands, the bit 3 & bit 8 (b2 to b7) are given a value of 0.

The Display Mode Setting Commands determine the number of segments and grids to be used (14 to 11 segments, 4 to 7 grids). A display command ON must be executed in order to resume display. If the same mode setting is selected, no command execution is take place, therefore, nothing happens.


When Power is turned ON, the 7-grid, 11-segment modes is selected.

COMMANDS 2: DATA SETTING COMMANDS

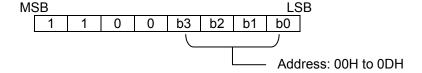

The Data Setting Commands executes the Data Write or Data Read Modes for PT6963. The data Setting Command, the bits 5 and 6 (b4, b5) are given the value of 0, bit 7 (b6) is given the value of 1 while bit 8 (b7) is given the value of 0. Please refer to the diagram below.

When power is turned ON, bit 4 to bit 1 (b3 to b0) are given the value of 0.

PT6963 KEY MATRIX & KEY INPUT DATA STORAGE RAM

PT6963 Key Matrix consists of 10 x 3 array as shown below:

Each data entered by each key is stored as follows and read by a READ Command, starting from the last significant bit. When the most significant bit of the data (b7) has been read, the least significant bit of the next data (b0) is read.


K1K3	K1K3		
SG1/KS1	SG2/KS2	x	
SG3/KS3	SG4/KS4	x	Dooding
SG5/KS5	SG6/KS6	x	Reading Sequence
SG7/KS7	SG8/KS8	x	Sequence
SG9/KS9	SG10/KS10	X	,
b0b2	b3b5	b6b7	-

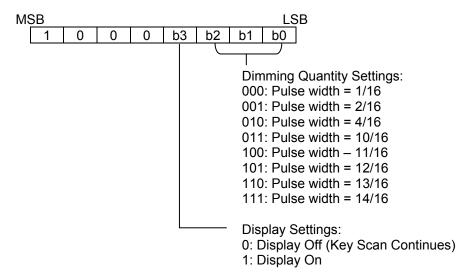
Note: b6 and b7 do not care.

COMMANDS 3: ADDRESS SETTING COMMANDS

Address Setting Commands are used to set the address of the display memory. The address is considered valid if it has a value of 00H to 0DH. If the address is set to 0EH or higher, the data is ignored until a valid address is set. When power is turned ON, the address is set at 00H.

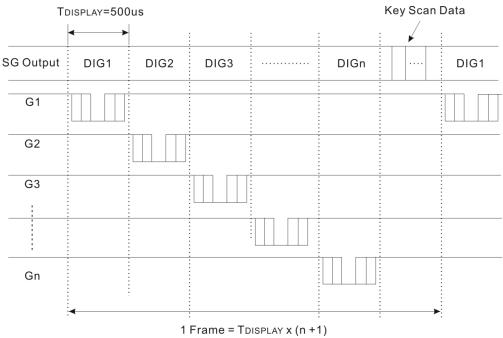
Please refer to the diagram below.

DISPLAY MODE AND RAM ADDRESS

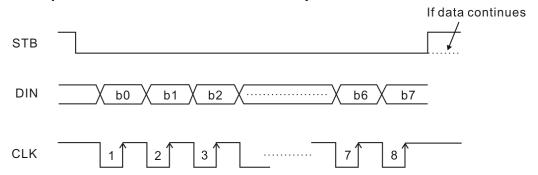

Data transmitted from an external device to PT6963 via the serial interface are stored in the Display RAM and are assigned addresses. The RAM addresses of PT6963 are given below in 8 bits unit.

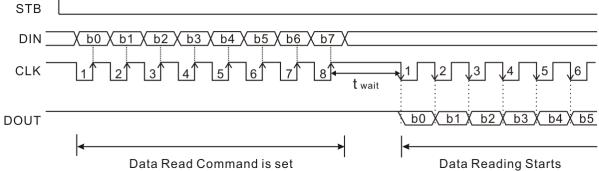
SG1	SG4	SG5	SG8	SG9	SG12	SG13	SG14	<u>.</u>
0	0HL	00HU		C	1HL	011	HU	DIG1
0	2HL	02HU		C	3HL	031	HU	DIG2
0	4HL	04HU		C	5HL	051	HU	DIG3
0	6HL	06HU		C	7HL	07	HU	DIG4
0	8HL	UH80		C	9HL	091	HU	DIG5
0.	AHL	0AHU		0	BHL	0B	HU	DIG6
0	CHL	0CHU		0	DHL	0D	HU	DIG7

b0	b3	b4		b7
xxHL			xxHU	
Lower 4 bits			Higher 4 bits	


COMMAND 4: DISPLAY CONTROL COMMANDS

The Display Control Commands are used to turn ON or OFF a display. It also used to set the pulse width. Please refer to the diagram below. When the power is turned ON, a 1/16 pulse width is selected and the displayed is turned OFF (the key scanning is started).

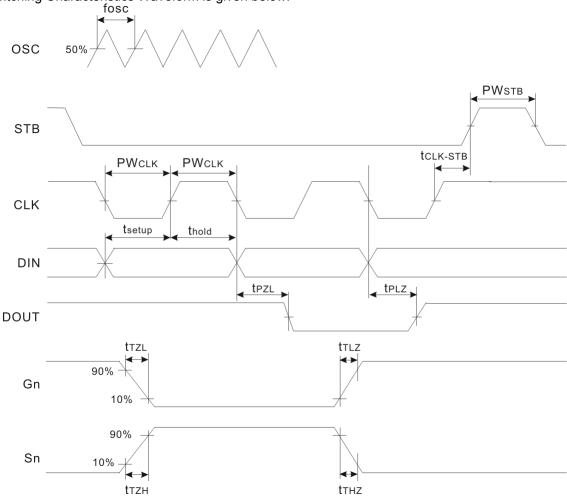

SCANNING AND DISPLAY TIMING


SERIAL COMMUNICATION FORMAT

The following diagram shows the PT6963 serial communication format. The DOUT Pin is an N-channel, open-drain output pin, therefore, it is highly recommended that an external pull-up resistor (1 K Ω to 10 K Ω) must be connected to DOUT.

RECEPTION (DATA/COMMAND WRITE)

TRANSMISSION (DATA READ)



where: twait (waiting time) ≥ 1µs

It must be noted that when the data is read, the waiting time (twait) between the rising of the eighth clock that has set the command and the falling of the first clock that has read the data is greater or equal to 1µs.

SWITCHING CHARACTERISTIC WAVEFORM

PT6963 Switching Characteristics Waveform is given below.

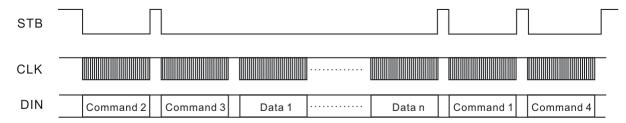
where:

PW_{CLK} (Clock Pulse Width) \geq 400ns t_{setup} (Data Setup Time) \geq 100ns $t_{CLK-STB}$ (Clock - Strobe Time) \geq 1 μ s fosc = Oscillation Frequency $t_{TZL} \leq 1\mu$ s

 PW_{STB} (Strobe Pulse Width) $\geq 1 \mu s$ t_{hold} (Data Hold Time) $\geq 100 ns$ t_{THZ} (Fall Time) $\leq 10 \mu s$

 t_{PZL} (Propagation Delay Time) \leq 100ns t_{PLZ} (Propagation Delay Time) \leq 300ns $t_{TLZ} \leq$ 10 μs

Note:

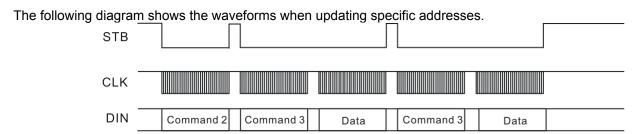

Test Condition Under

 t_{THZ} (Pull low resistor) = 10K Ω , Loading capacitor = 300pF t_{TLZ} (Pull high resistor) = 10K Ω , Loading capacitor = 300pF

V1.3 11

APPLICATIONS

Display memory is updated by incrementing addresses. Please refer to the following diagram.

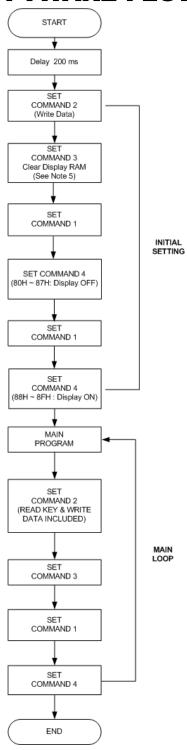

where:

Command 1: Display mode setting command

Command 2: Data setting command Command 3: Address setting command

Data 1 to n: Transfer display data (14 bytes max.)

Command 4: Display control command

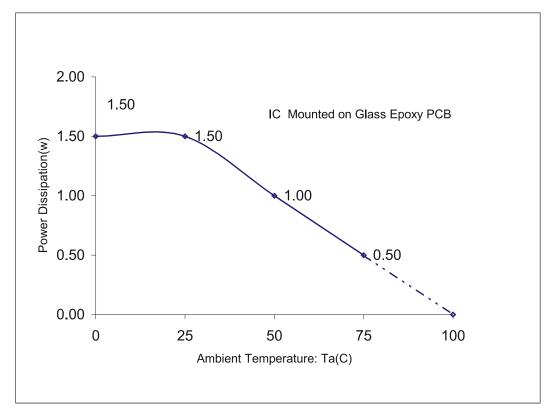


where:

Command 2: Data setting command Command 3: Address setting command

Data: Display data

RECOMMENDED SOFTWARE FLOWCHART


Notes:

- 1. Command 1: Display Mode Commands
- 2. Command 2: Data Setting Commands
- 3. Command 3: Address Setting Commands
- 4. Command 4: Display Control Commands
- When IC power is applied for the first time, the contents of the Display RAM are not defined; thus, it is strongly suggested that the contents of the Display RAM be cleared during the initial setting.

SOP 32 (300MIL) THERMAL PERFORMANCE IN STILL AIR

JUNCTION TEMPERATURE: 100 $^{\circ}$

ABSOLUTE MAXIMUM RATINGS

(Unless otherwise stated, Ta=25°C, GND=0V)

Parameter	Symbol	Ratings	Unit
Supply Voltage	VDD	-0.3 to +7	V
Logic Input Voltage	VI -0.3 to VDD+0.3		V
Driver Output Current	IOLGR	+250	mA
Driver Output Gurrent	IOHSG	-50	mA
Maximum Driver Output Current/Total	ITOTAL	400	mA
Operating Temperature	Topr	-40 ~ +85	$^{\circ}\!\mathbb{C}$
Storage Temperature	Tstg	-65 ~ +150	$^{\circ}\!\mathbb{C}$

RECOMMENDED OPERATING RANGE

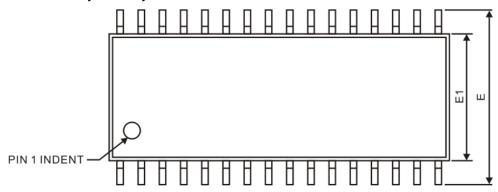
(Unless otherwise stated, Topr=-40~+85°C, GND=0V)

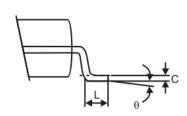
Parameter	Symbol	Min.	Тур.	Max.	Unit
Logic Supply Voltage	VDD	4.5	5	5.5	V
Dynamic Current (Note1)	IDDdyn	-	-	5	mA
High-Level Input Voltage	VIH	2.4	-	3.3V/VDD (Note 2)	V
Low-Level Input Voltage	VIL	0	-	1	V

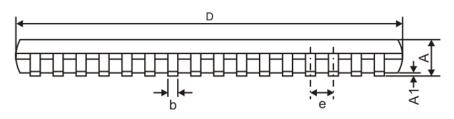
Notes:

- 1. Test Condition: Set Display Control Commands = 80H (Display Turn OFF State & under no load).
- 2. The maximum value of VIH (High-Level Input Voltage) depends on user's MCU supply voltage. Which means the maximum value of VIH is 3.3V (VDD) when user's MCU supply voltage is 3.3V(VDD).

ELECTRICAL CHARACTERISTICS


(Unless otherwise stated, VDD=5V, GND=0V, Ta=25°C)


Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
High-Level Output Current	IOHSG(1)	VO=VDD-2V SG1 to SG11, SG12/GR7 to SG14/GR5	-20	-25	-40	mA
Tright-Level Output Gurrent	IOHSG(2)	VO=VDD-3V SG1 to SG11, SG12/GR7 to SG14/GR5	-25	-30	-50	mA
Low-Level Output Current	IOLGR	VO=0.3V GR1 to GR4, SG12/GR7 to SG14/GR5	100	140	-	mA
Low-Level Output Current	IOLDOUT	VO=0.4V	4	-	-	mA
Segment High-Level Output Current Tolerance	ITOLSG	VO=VDD-3V SG1 to SG11, SG12/GR7 to SG14/GR5	1	-	±5	%
High-Level Input Voltage	VIH	-	2.4	-	3.3 /VDD (note)	V
Low-Level Input Voltage	VIL	-	0	-	1	V
Oscillation Frequency	fosc	R=51ΚΩ	350	500	650	KHz
K1 to K3 Pull Down Resistor	RKN	K1 to K3 VDD=5V	40	-	100	ΚΩ


Note: The maximum value of VIH (High-Level Input Voltage) depends on user's MCU supply voltage. Which means the maximum value of VIH is 3.3V (VDD) when user's MCU supply voltage is 3.3V (VDD).

PACKAGE INFORMATION

32 PINS, SOP, 300 MIL

Symbol	Min. Typ.		Max.			
Α	-	-	2.65			
A1	0.10	-	-			
b	0.31	-	0.51			
С	0.20	-	0.33			
е	1.27 BSC.					
D	20.32	-	20.73			
E	7.40	-	7.60			
E1	10.00	-	10.65			
L	0.38	-	1.27			
θ	0		8			

Notes:

^{1.} Refer to JEDEC MO-119 AC

^{2.} Unit: mm

IMPORTANT NOTICE

Princeton Technology Corporation (PTC) reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and to discontinue any product without notice at any time. PTC cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a PTC product. No circuit patent licenses are implied.

Princeton Technology Corp. 2F, 233-1, Baociao Road, Sindian, Taipei 23145, Taiwan Tel: 886-2-66296288

Fax: 886-2-29174598 http://www.princeton.com.tw

V1.3 17