




### **MECHANICAL DATA**

Dimensions in mm (inches)



### **SMD 05 (TO-276AA)**

Pad 1 - Source

Pad 2 - Drain

(also available as IRF9530SMD05 with Gate and Source reversed)

Pad 3 - Gate

# **N-CHANNEL POWER MOSFET** FOR HI-REL **APPLICATIONS**

**V**DSS 100V I<sub>D(cont)</sub> **12A** R<sub>DS(on)</sub>  $0.052\Omega$ 

### **FEATURES**

- HERMETICALLY SEALED
- SIMPLE DRIVE REQUIREMENTS
- LIGHTWEIGHT
- SCREENING OPTIONS AVAILABLE

## **ABSOLUTE MAXIMUM RATINGS** (T<sub>case</sub> = 25°C unless otherwise stated)

| $BV_DS$         | Drain – Source BreakdownVoltage                      | 100V          |
|-----------------|------------------------------------------------------|---------------|
| $V_{GS}$        | Gate – Source Voltage                                | ±20V          |
| $I_D$           | Continuous Drain Current @ T <sub>case</sub> = 25°C  | 22A           |
| $I_D$           | Continuous Drain Current @ T <sub>case</sub> = 100°C | 16A           |
| I <sub>DM</sub> | Pulsed Drain Current                                 | 88A           |
| $P_{D}$         | Power Dissipation @ T <sub>case</sub> = 25°C         | 75W           |
|                 | Linear Derating Factor                               | 0.6W/°C       |
| $T_J$ , $T_stg$ | Operating and Storage Temperature Range              | −55 to +150°C |
| $R_{	hetaJC}$   | Thermal Resistance Junction to Case                  | 1.67°C/W max. |

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

**Semelab plc.** Telephone +44(0)1455) 556565. Fax +44(0)1455) 552612.

Document Number 5724

E-mail: sales@semelab.co.uk Website http://www.semelab.co.uk





## **ELECTRICAL CHARACTERISTICS** ( $T_C = 25^{\circ}C$ unless otherwise stated)

|                           | Parameter                                     | Test Conditions                             | Min. | Тур. | Max.  | Unit           |  |  |
|---------------------------|-----------------------------------------------|---------------------------------------------|------|------|-------|----------------|--|--|
| STATIC ELECTRICAL RATINGS |                                               |                                             |      |      |       |                |  |  |
| BV <sub>DSS</sub>         | Drain – Source Breakdown Voltage              | $V_{GS} = 0$ $I_{D} = 250 \mu A$            | 100  |      |       | V              |  |  |
| $\Delta BV_{DSS}$         | Temperature Coefficient of                    | Reference to 25°C I <sub>D</sub> = 1mA      |      | 0.11 |       | V/°C           |  |  |
| $\Delta T_{J}$            | Breakdown Voltage                             | Therefore to 25 C ID = TITA                 | `    | 0.11 |       | • / •          |  |  |
| R <sub>DS(on)</sub>       | Static Drain – Source On–State<br>Resistance* | $V_{GS} = 10V$ $I_D = 16A$                  |      |      | 0.052 | Ω              |  |  |
| V <sub>GS(th)</sub>       | Gate Threshold Voltage                        | $V_{DS} = V_{GS}$ $I_D = 250\mu A$          | 2    |      | 4     | V              |  |  |
| 9 <sub>fs</sub>           | Forward Transconductance*                     | V <sub>DS</sub> ≥ 50V I <sub>DS</sub> = 16A | 11   |      |       | S(Ω)           |  |  |
| I <sub>DSS</sub>          | Zero Gate Voltage Drain Current               | V <sub>DS</sub> = 100V                      |      |      | 25    | μΑ             |  |  |
|                           | $(V_{GS} = 0)$                                | $V_{DS} = 80V$ $T_J = 150$ °C               |      |      | 250   |                |  |  |
| I <sub>GSS</sub>          | Forward Gate – Source Leakage                 | V <sub>GS</sub> = 20V                       |      |      | 100   | nA             |  |  |
| I <sub>GSS</sub>          | Reverse Gate – Source Leakage                 | V <sub>GS</sub> = -20V                      |      |      | -100  |                |  |  |
|                           | DYNAMIC CHARACTERISTICS                       |                                             |      |      |       |                |  |  |
| C <sub>iss</sub>          | Input Capacitance                             | V <sub>GS</sub> = 0                         |      | 1487 |       |                |  |  |
| C <sub>oss</sub>          | Output Capacitance                            | V <sub>DS</sub> = 25V                       |      | 353  |       | pF             |  |  |
| C <sub>rss</sub>          | Reverse Transfer Capacitance                  | f = 1MHz                                    |      | 182  |       |                |  |  |
| $Q_g$                     | Total Gate Charge V <sub>GS</sub> = 10V       |                                             |      |      | 104   | nC             |  |  |
| $Q_{gs}$                  | Gate - Source Charge                          | I <sub>D</sub> = 16A                        |      |      | 20    |                |  |  |
| $Q_{gd}$                  | Gate - Drain ("Miller") Charge                | $V_{DS} = 0.8BV_{DSS}$                      |      |      | 43    | 1              |  |  |
| t <sub>d(on)</sub>        | Turn-On Delay Time                            | V <sub>DD</sub> = 50V                       |      |      | 24    |                |  |  |
| t <sub>r</sub>            | Rise Time                                     | I <sub>D</sub> = 16A                        |      |      | 125   | ]              |  |  |
| t <sub>d(off)</sub>       | Turn-Off Delay Time                           | $R_G = 7.5\Omega$                           |      |      | 86    | ns             |  |  |
| t <sub>f</sub>            | Fall Time                                     | V <sub>GS</sub> = 10V                       |      |      | 82    |                |  |  |
|                           | SOURCE – DRAIN DIODE CHARACTERISTICS          |                                             |      |      |       |                |  |  |
| I <sub>S</sub>            | Continuous Source Current                     |                                             |      |      | 22    | Α              |  |  |
| I <sub>SM</sub>           | Pulse Source Current                          |                                             |      |      | 88    | ] <sup>A</sup> |  |  |
| $V_{SD}$                  | Diode Forward Voltage*                        | $I_S = 16A$ $V_{GS} = 0_V$                  | ,    |      | 1.3   | ٧              |  |  |
| t <sub>rr</sub>           | Reverse Recovery Time                         | $I_F = 16A$ $V_{DD} \le 50V$                |      |      | 240   | ns             |  |  |
| Q <sub>rr</sub>           | Reverse Recovery Charge                       | $d_i / d_t \le 100A/\mu s$                  |      |      | 1.67  | μС             |  |  |

#### **Notes**

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

<sup>\*</sup> Pulse Test: Pulse Width  $\leq 300 \mu s$ ,  $\delta \leq 2\%$