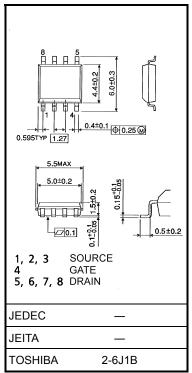
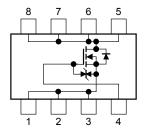
TOSHIBA

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (U-MOS III)


TPC8014

Lithium Ion Battery Applications Portable Equipment Applications Notebook PC Applications

- Small footprint due to small and thin package
- Low drain-source ON resistance: R_{DS} (ON) = 11 m Ω (typ.)
- High forward transfer admittance: $|Y_{fs}| = 10 \text{ S} (typ.)$
- Low leakage current: $I_{DSS} = 10 \ \mu A (max) (V_{DS} = 30 \ V)$
- Enhancement mode: $V_{th} = 1.3$ to 2.5 V ($V_{DS} = 10$ V, $I_D = 1$ mA)


			1	
Character	ristics	Symbol	Rating	Unit
Drain-source voltage		V _{DSS}	30	V
Drain-gate voltage (R	_{GS} = 20 kΩ)	V _{DGR}	30	V
Gate-source voltage		V _{GSS}	±20	V
Drain current	DC (Note 1)	ID	11	А
	Pulse (Note 1)	I _{DP}	44	
Drain power dissipati	on (t = 10 s)	PD	1.9	W
	(Note 2a)	טי	1.9	vv
Drain power dissipati	on (t = 10 s)	PD	1.0	W
	(Note 2b)	U	1.0	vv
Single pulse avalanch	ne energy	E _{AS}	157	mJ
	(Note 3)	LAS	107	1110
Avalanche current		I _{AR}	11	А
Repetitive avalanche	energy	E _{AR}	0.19	mJ
(Note 2a) (Note 4)	⊢AR	0.19	mo
Channel temperature		T _{ch}	150	°C
Storage temperature	range	T _{stg}	–55 to 150	°C

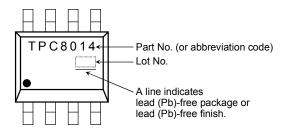
Absolute Maximum Ratings (Ta = 25°C)

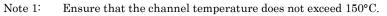
Weight: 0.08 g (typ.)

Circuit Configuration

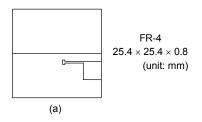
Note: (Note 1), (Note 2), (Note 3) and (Note 4): See the next page.

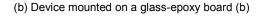
Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/Derating Concept and Methods) and individual reliability data (i.e. reliability test report and estimated failure rate, etc.).

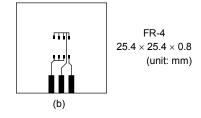

This transistor is an electrostatic-sensitive device. Please handle with caution.


Unit: mm

Thermal Characteristics

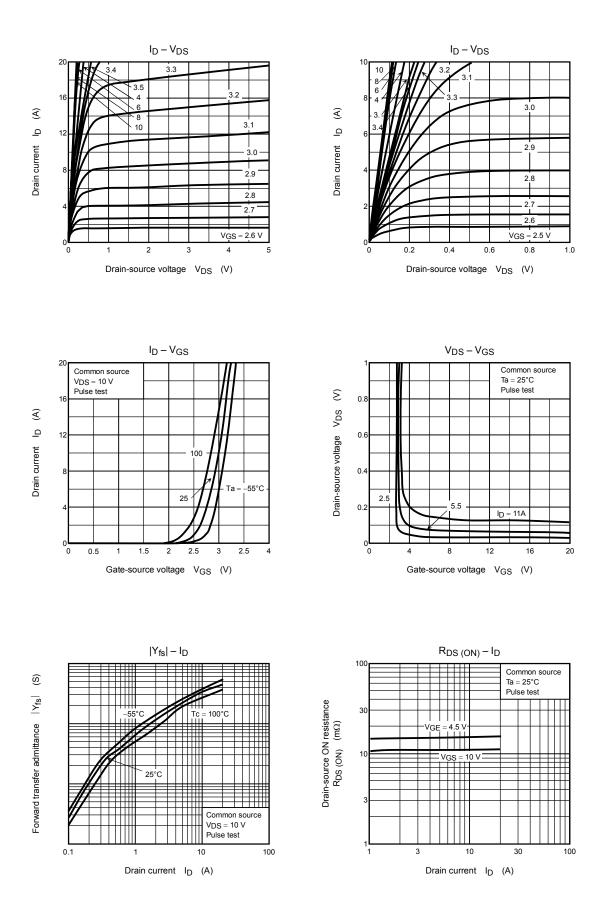

Characteristics	Symbol	Max	Unit
Thermal resistance, channel to ambient $(t = 10 \text{ s})$ (Note 2a)	R _{th (ch-a)}	65.8	°C/W
Thermal resistance, channel to ambient $(t=10 \ s) \ (Note \ 2b)$	R _{th (ch-a)}	125	°C/W


Marking (Note 5)

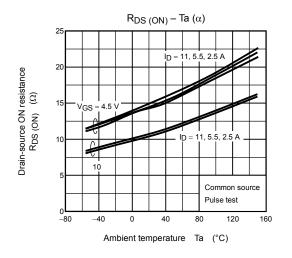


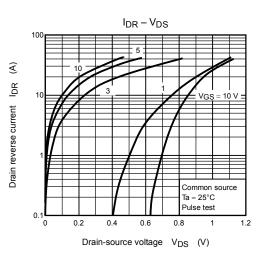
Note 2: (a) Device mounted on a glass-epoxy board (a)

- Note 3: $V_{DD} = 24 V$, $T_{ch} = 25^{\circ}C$ (initial), L = 1.0 mH, $R_G = 25 \Omega$, $I_{AR} = 11 \text{ A}$
- Note 4: Repetitive rating: pulse width limited by max channel temperature
- Note 5: on lower left of the marking indicates Pin 1.

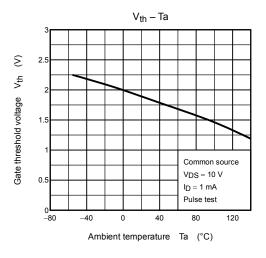

Electrical Characteristics (Ta = 25°C)

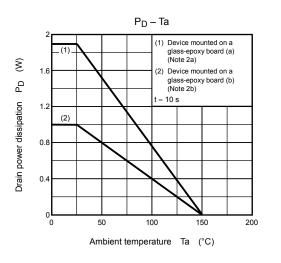
Characteristics		Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage cur	rent	I _{GSS}	$V_{GS}=\pm 16~V,~V_{DS}=0~V$			±10	μA
Drain cut-OFF cu	irrent	I _{DSS}	$V_{DS} = 30 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$			10	μA
Drain agurag bra	te leakage current ain cut-OFF current ain-source breakdown voltage te threshold voltage ain-source ON resistance ward transfer admittance ut capacitance verse transfer capacitance tput capacitance	V (BR) DSS	$I_D = 10 \text{ mA}, V_{GS} = 0 \text{ V}$	30			V
Diam-source brea	akuown vollage	V (BR) DSX	$I_D = 10 \text{ mA}, V_{GS} = -20 \text{ V}$	15	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	v	
Gate threshold vo	oltage	V _{th}	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 1 \text{ mA}$	1.3		2.5	V
	ŭ		$V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 5.5 \text{ A}$	_	15	22	mΩ
Drain-source ON	resistance	R _{DS} (ON)	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 5.5 \text{ A}$	30 15 1.3 15 11 5 10 1860 1Hz 320 19 20 V 69	14		
Forward transfer admittance		Y _{fs}	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 5.5 \text{ A}$	5	10		S
Input capacitance	9	C _{iss}		_	1860	_	
Input capacitance Reverse transfer capacitance Output capacitance		C _{rss}	$V_{DS} = 10 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{ f} = 1 \text{ MHz}$	_	270	_	pF
Reverse transfer capacitance Output capacitance Rise time Turn-ON time		C _{oss}		_	320		
	Rise time	tr	$V_{GS} \begin{array}{c} 10 \text{ V} \\ 0 \text{ V} \\ \hline \end{array} \begin{array}{c} I_{D} = 5.5 \text{ A} \\ \hline \\ 0 \text{ V} \\ \hline \end{array} \begin{array}{c} 0 \\ \hline \\ 0 \\ \hline \end{array} \begin{array}{c} 0 \\ \hline \end{array} \begin{array}{c} 0 \\ \hline \\ 0 \\ \hline \end{array} \begin{array}{c} 0 \\ \hline \end{array} \end{array}$ \\begin{tabular}{c} 0 \\ \hline \end{array} \end{array}	_	9	_	- ns
Reverse transfer capacit Output capacitance Rise Switching time Fall t	Turn-ON time	t _{on}		_	19		
	Fall time	t _f		_	20		
	Turn-OFF time	toff			69	_	
Total gate charge (gate-source plus gate-drain)		Qg			39	_	nC
Gate-source charge 1		Q _{gs1}	$V_{DD} \simeq 24$ V, $V_{GS} = 10$ V, $I_D = 11$ A		4	_	
Gate-drain ("miller") charge		Q _{gd}			9		

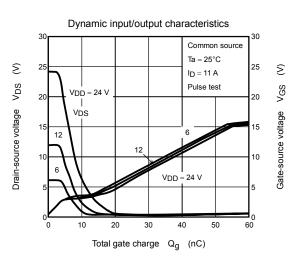

Source-Drain Ratings and Characteristics ($Ta = 25^{\circ}C$)

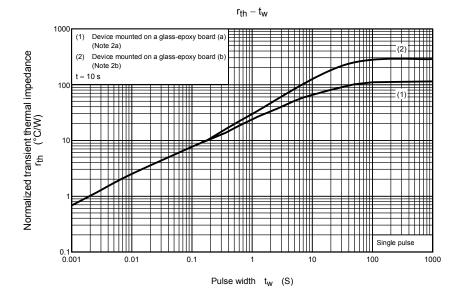

Characteristics		Symbol	Test Condition	Min	Тур.	Max	Unit	
Drain reverse current	Pulse	(Note 1)	IDRP	—	_		44	А
Forward voltage (diode)			V _{DSF}	$I_{DR} = 11 \text{ A}, V_{GS} = 0 \text{ V}$		_	-1.2	V

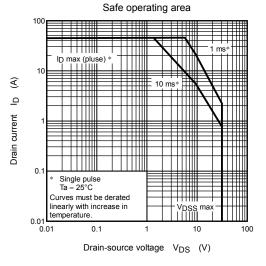
TOSHIBA




TOSHIBA







RESTRICTIONS ON PRODUCT USE

030619EAA

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
- In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.