APPROVAL | PART NO. | DESCRITION | REMARKS | |------------|------------------------|--------------------------| | HO12864Y04 | OLED (128 × 64) | * This is ROHS compliant | | CUSTOMER APPLICATION P/N | | |--------------------------|--| | APPROVED BY | | | DATE | | PLEASE KINDLY FIND AND APPROVE THE SPECIFICATIONS INSERTED HEREIN AND RETURN ONE COPY HERE OF WITH YOUR SIGNATURE OF APPROVAL. | PERPARED BY | CHECKED BY | CONFIRMED BY | |-------------|------------|--------------| | | | | | | | | # HYES Optoelectronics, Inc. 2000 Wyatt Drive Suite 6 Santa Clara, CA 95054 USA PAGE 1 OF 24 # **CONTENTS** # 1. Basic Specifications - 1.1 Display Specifications - 1.2 Mechanical Specifications - 1.3 Active Area & Pixel Construction - 1.4 Mechanical Drawing - 1.5 Pin Definition - 1.6 Block Diagram # 2. Absolute Maximum Rating #### 3. Electrical Characteristics - 3.1 Optic Characteristics - 3.2 DC Characteristics - 3.3 AC Characteristics #### 4. Functional Specifications - 4.1 Commands - 4.2 Power down & Power up Sequence - 4.3 Reset Circuit - 4.4 Actual Application Example #### 5. Reliability - 5.1 Contents of Reliability Tests - 5.2 Lifetime - 5.3 Failure Check Standard ## 6. Outgoing Quality Control Specifications - 6.1 Environment Required - 6.2 Sampling Plan - 6.3 Criteria & Acceptable Quality Level ## 7. Package Specifications ## 8. Precautions When Using These OEL Display Modules | Date : Nov | <i>.</i> 12, 2007 | TECHNICAL SPECIFICATION | | |------------|-------------------|-------------------------|--------------| | HYES | OLED | HO12864Y04 | Page 2 of 24 | # 1. Basic Specifications # 1.1 Display Specifications 1) Display Mode: Passive Matrix 2) Display Color: Monochrome (Yellow) 3) Drive Duty: 1/64 Duty # 1.2 Mechanical Specifications 1) Outline Drawing: According to the annexed outline drawing 2) Number of Pixels: 128×64 3) Panel Size: 73.00 × 41.86 × 2.00 (mm) 4) Active Area: 61.41 × 30.69 (mm) 5) Pixel Pitch: 0.48 × 0.48 (mm) 6) Pixel Size: 0.45 × 0.45 (mm) 7) Weight: 21 (g) | Date : Nov | v. 12, 2007 | TECHNICAL SPECIFICATION | | |------------|-------------|-------------------------|--------------| | HYES | OLED | HO12864Y04 | Page 3 of 24 | # 1.5 Pin Definition | Pin Number | Symbol | I/O | Function | | | |-------------|------------|-----|--|--|--| | Power Suppl | v | • | | | | | 21 | VDD | Р | Power Supply for Logic Circuit This is a voltage supply pin. It must be connected to external source. | | | | 29 | VSS | P | Ground of OEL System This is a ground pin. It also acts as a reference for the logic pins, the OEL driving voltages, and the analog circuits. It must be connected to external ground. | | | | 2 | VCC | P | Power Supply for OEL Panel This is the most positive voltage supply pin of the chip. It can be supplied externally or generated internally by using internal DC/DC voltage converter. | | | | Driver | | | | | | | 4 | IREF | I | Current Reference for Brightness Adjustment This pin is segment current reference pin. A resistor should be connected between this pin and VSS. Set the current at 10µA. | | | | 3 | СОМН | _ [| Voltage Output High Level for COM Signal This pin is the input pin for the voltage output high tevel for COM lignals. It can be supplied externally or internally. When VCOMH is generated internally, a rapacitor should be connected between this pin and VSS. | | | | 30 | VSL | 0 | This pin is the output Low Level for SEG Signal This pin is the output pin for the voltage output low level for SEG signals. A capacitor should be connected between this pin and VSS. | | | | Interface | | | | | | | 20
19 | BS1
BS2 | I | Communicating Protocol Select These pins are MCU interface selection input. See the following table: 68XX-parallel 80XX-parallel Serial BS1 | | | | 16 | RES# | I | Power Reset for Controller and Driver This pin is reset signal input. When the pin is low, initialization of the chip is executed. | | | | 17 | CS# | I | Chip Select This pin is the chip select input. The chip is enabled for MCU communication only when CS# is pulled low. | | | | 15 | D/C# | I | MCU communication only when CS# is pulled low. Data/Command Control This pin is Data/Command control pin. When the pin is pulled high, the input at D7~D0 is treated as display data. When the pin is pulled low, the input at D7~D0 will be transferred to the command register. For deta relationship to MCU interface signals, please refer to the Timing Characteristics Diagrams. When the pin is pulled high and serial interface mode is selected, the data at SDIN is treated as data. When it is pulled low, the data at SDIN will be transferred to the command register. | | | | Date : Nov | v. 12, 2007 | TECHNICAL SPECIFICATION | | |------------|-------------|-------------------------|--------------| | HYES | OLED | HO12864Y04 | Page 5 of 24 | # 1.5 Pin Definition (Continued) | Pin Number | Symbol | I/O | Function | |---------------|------------|------------|--| | Interface (Co | ontinued) | | | | 13 | E/RD# | Ι | Read/Write Enable or Read This pin is MCU interface input. When interfacing to a 68XX-series microprocessor, this pin will be used as the Enable (E) signal. Read/write operation is initiated when this pin is pulled high and the CS# is pulled low. When connecting to an 80XX-microprocessor, this pin receives the Read (RD#) signal. Data read operation is initiated when this pin is pulled low and CS# is pulled low. | | 14 | R/W# | Ι | Read/Write Select or Write This pin is MCU interface input. When interfacing to a 68XX-series microprocessor, this pin will be used as Read/Write (R/W#) selection input. Pull this pin to "High" for read mode and pull it to "Low" for write mode. When 80XX interface mode is selected, this pin will be the Write (WR#) input. Data write operation is initiated when this pin is pulled low and the CS# is pulled low. | | 5~12 | 0 | ■ Ⅱ | These pins are 8-bit bi-directional data was to be connected a the inicroprocessor data dus. We en serial mode is selected, D1 will be the serial data input SDIN will be the serial data input SDIN will be the serial cack input SCLIM. | | Reserve | | | | | 22~28 | N.C. | - | Reserved P in The N.C. pins between function pins are reserved for compatible and flexible design. | | 1 | N.C. (GND) | - | Reserved P in (Supporting P in) The supporting pins can reduce the influences from stresses on the function pins. These pins must be connected to external ground. | | Date : Nov | ı. 12, 2007 | TECHNICAL SPEC | IFICATION | |------------|-------------|----------------|--------------| | HYES | OLED | HO12864Y04 | Page 6 of 24 | # Active Area 2.70" 128 x 64 Pixels MCU Interface Selection: BS1 and BS2 Pins connected to MCU interface: D7~D0, E/RD#, R/W#, D/C#, RES#, and CS# C1, C3: 0.1 µF C2, C6: 4.7 µF C4: 10 µF C5: 4.7µF / 25V Tantalum Capacitor R1: $820k\Omega$, R1 = (Voltage at IREF - BGGND) / IREF | Date : Nov | v. 12, 2007 | TECHNICAL SPEC | IFICATION | |------------|-------------|----------------|--------------| | HYES | OLED | HO12864Y04 | Page 7 of 24 | # 2. Absolute Maximum Ratings | Parameter | Symbol | Min | Max | Unit | Notes | |----------------------------|--------------|------|-----|------|-------| | Supply Voltage for Logic | $ m V_{DD}$ | -0.3 | 4 | V | 1, 2 | | Supply Voltage for Display | $ m V_{CC}$ | 0 | 16 | V | 1, 2 | | Operating Temperature | T_{OP} | -30 | 70 | °C | - | | Storage Temperature | $T_{ m STG}$ | -40 | 80 | °C | - | Note 1: All the above voltages are on the basis of "VSS = 0V". Note 2: When this module is used beyond the above absolute maximum ratings, permanent breakage of the module may occur. Also, for normal operations, it is desirable to use this module under the conditions according to Section 3. "Optics & Electrical Characteristics". If this module is used beyond these conditions, malfunctioning of the module can occur and the reliability of the module may deteriorate. | Date : Nov | ı. 12, 2007 | TECHNICAL SPEC | IFICATION | |------------|-------------|----------------|--------------| | HYES | OLED | HO12864Y04 | Page 8 of 24 | # 3. Optics & Electrical Characteristics ## 3.1 Optics Characteristics | Characteristics | Symbol | Conditions | Min | Тур | Max | Unit | |--------------------|-------------|-------------------------|------|---------|------|-------------------| | Brightness | $L_{ m br}$ | With Polarizer (Note 3) | 70 | 100 | - | cd/m ² | | C.I.E. (Yellow) | (x) | Without Polarizer | 0.44 | 0.48 | 0.52 | | | C.I.E. (Tellow) | (y) | Without Polarizer | 0.47 | 0.51 | 0.55 | | | Dark Room Contrast | CR | | - | >1000:1 | - | | | View Angle | | | >160 | - | - | degree | ^{*} Optical measurement taken at $V_{\rm DD}$ = 2.8V, $V_{\rm CC}$ = 15V. Software configuration follows Section 4.4 Initialization. #### 3.2 DC Characteristics Note 3: Brightness (L_{br}) and Supply Voltage for Display (V_{CC}) are subject to the change of the panel characteristics and the customer's request. | Date : Nov. 12, 2007 | | TECHNICAL SPECIFICATION | | |----------------------|------|-------------------------|--------------| | HYES | OLED | HO12864Y04 | Page 9 of 24 | Note 4: $V_{DD} = 2.8V$, $V_{CC} = 15V$, 50% Display Area Turn on. Note 5: $V_{DD} = 2.8V$, $V_{CC} = 15V$, 100% Display Area Turn on. ^{*} Software configuration follows Section 4.4 Initialization. # 3.3 AC Characteristics # 3.3.1 68XX-Series MPU Parallel Interface Timing Characteristics: | Symbol | Description | Min | Max | Unit | |------------------------------|--------------------------------------|-----|-----------|------| | $t_{ m cycle}$ | System Cycle Time | 300 | - | ns | | t_{AS} | Address Setup Time | 0 | - | ns | | $t_{ m AH}$ | Address Hold Time | 0 | - | ns | | t_{DSW} | Write Data Setup Time | 40 | - | ns | | $t_{ m DHW}$ | Write Data Hold Time | 15 | - | ns | | $t_{ m DHR}$ | Read Data Hold Time | 20 | - | ns | | t_{OH} | Output Disable Time | - | 70 | ns | | $t_{ m ACC}$ | Access Time | - | 140 | ns | | DW | Chip Select Low Pulse Width (Read) | 120 | | 44.0 | | $\mathrm{PW}_{\mathrm{CSL}}$ | Chip Select Low Pulse width (Write) | 60 | - | ns | | DW | Chip Select High Pulse Width (Read) | 60 | | 44.0 | | $\mathrm{PW}_{\mathrm{CSH}}$ | Chip Select High Pulse Width (Write) | 60 | -
8 83 | ns | | $t_{ m R}$ | Rise Time | - | 15 | ns | | $t_{ m F}$ | Fall Tings | - | 15 | ns | $(V_{DD} - V_{SS} = 2.4V \text{ to } 3.5V, T_a = 25^{\circ}\text{C})$ | Date : Nov. 12, 2007 | | TECHNICAL SPECIFICATION | | |----------------------|------|-------------------------|---------------| | HYES | OLED | HO12864Y04 | Page 10 of 24 | # $3.3.2\ \ 80XX\text{-Series MPU Parallel Interface Timing Characteristics:}$ | Symbol | Description | Min | Max | Unit | |-------------------|--------------------------------------|-----|----------|-------------| | $t_{ m cycle}$ | Clock Cycle Time | 300 | 1 | ns | | t_{AS} | Address Setup Time | 0 | - | ns | | t_{AH} | Address Hold Time | 0 | - | ns | | $t_{ m DSW}$ | Write Data Setup Time | 40 | - | ns | | $t_{ m DHW}$ | Write Data Hold Time | 15 | - | ns | | $t_{ m DHR}$ | Read Data Hold Time | 20 | - | ns | | t_{OH} | Output Disable Time | - | 70 | ns | | $t_{ m ACC}$ | Access Time | - | 140 | ns | | DW | Chip Select Low Pulse Width (Read) | 120 | | 12 G | | PW_{CSL} | Chip Select Low Pulse width (Write) | 60 | - | ns | | DW | Chip Select High Pulse Width (Read) | 60 | | 0 | | PW_{CSH} | Chip Select High Pulse Width (Write) | 60 | - | ns | | $t_{ m R}$ | Rise Time
Fall Fine | | 15
15 | ns
ns | | Date : Nov. 12, 2007 | | TECHNICAL SPECIFICATION | | |----------------------|------|-------------------------|---------------| | HYES | OLED | HO12864Y04 | Page 11 of 24 | # 3.3.3 Serial Interface Timing Characteristics: | Sym bol | Description | Min | Max | Unit | |--------------------|------------------------|-----|-----|------| | $t_{ m cycle}$ | Clock Cycle Time | 250 | - | ns | | t_{AS} | Address Setup Time | 150 | - | ns | | $t_{ m AH}$ | Address Hold Time | 150 | - | ns | | t_{CSS} | Chip Select Setup Time | 120 | - | ns | | $t_{ m CSH}$ | Chip Select Hold Time | 60 | - | ns | | $t_{ m DSW}$ | Write Data Setup Time | 100 | - | ns | | $t_{ m DHW}$ | Write Data Hold Time | 100 | - | ns | | $t_{ m CLKL}$ | Serial Clock Low Time | 100 | - | ns | | $t_{ m CLKH}$ | Serial Clock High Time | 100 | - | ns | | $t_{ m R}$ | Rise Time | _ | 15 | ns | | $t_{ m F}$ | Fall Time | _ | 15 | ns | ^{*} $(V_{DD} - V_{SS} = 2.4V \text{ to } 3.5V, T_a = 25^{\circ}C)$ | Date : Nov. 12, 2007 | | TECHNICAL SPECIFICATION | | |----------------------|------|-------------------------|---------------| | HYES | OLED | HO12864Y04 | Page 12 of 24 | # 4. Functional Specification #### 4.1. Commands Refer to the Technical Manual for the SSD1325 #### 4.2 Power down and Power up Sequence To protect OEL panel and extend the panel life time, the driver IC power up/down routine should include a delay period between high voltage and low voltage power sources during turn on/off. It gives the OEL panel enough time to complete the action of charge and discharge before/after the operation. #### 4.2.1 Power up Sequence: #### 4.3 Reset Circuit When RES# input is low, the chip is initialized with the following status: - 1. Display is OFF - 2. 128×80 Display Mode - 3. Normal segment and display data column and row address mapping (SEG0 mapped to column address 00H and COM0 mapped to row address 00H) - 4. Shift register data clear in serial interface - 5. Display start line is set at display RAM address 0 - 6. Column address counter is set at 0 - 7. Normal scan direction of the COM outputs - 8. Contrast control register is set at 80H - 9. Normal display mode (Equivalent to A4h command) | Date : Nov. 12, 2007 | | TECHNICAL SPECIFICATION | | |----------------------|------|-------------------------|---------------| | HYES | OLED | HO12864Y04 | Page 13 of 24 | # 4.4 Actual Application Example Command usage and explanation of an actual example <Initialization> If the noise is accidentally occurred at the displaying window during the operation, please reset the display in order to recover the display function. | Date : Nov. 12, 2007 | | TECHNICAL SPECIFICATION | | |----------------------|------|-------------------------|---------------| | HYES | OLED | HO12864Y04 | Page 14 of 24 | # 5. Reliability # 5.1 Contents of Reliability Tests | Item | Conditions | Criteria | |-----------------------------------|--|-----------------| | High Temperature Operation | 70°C, 240 hrs | | | Low Temperature Operation | -30°C, 240 hrs | | | High Temperature Storage | 80°C, 240 hrs | The operational | | Low Temperature Storage | -40°C, 240 hrs | functions work. | | High Temperature/Humidity Storage | 60°C, 90% RH, 240 hrs | | | Thermal Shock | -40°C ⇔ 85°C, 24 cycles
60 mins dwell | | ^{*} The samples used for the above tests do not include polarizer. #### 5.2 Lifetime Note 6: The average operating lifetime at room temperature is estimated by the accelerated operation at high temperature conditions. ## 5.3 Failure Check Standard After the completion of the described reliability test, the samples were left at room temperature for 2 hrs prior to conducting the failure test at 23±5°C; 55±15% RH. | Date : Nov. 12, 2007 | | TECHNICAL SPECIFICATION | | |----------------------|------|-------------------------|---------------| | HYES | OLED | HO12864Y04 | Page 15 of 24 | ^{*} No moisture condensation is observed during tests. # 6. Outgoing Quality Control Specifications ## 6.1 Environment Required Customer's test & measurement are required to be conducted under the following conditions: Temperature: 23 ± 5 °C Humidity: 55 ± 15 %RH Fluorescent Lamp: 30W Distance between the Panel & Lamp: ≥ 50 cm Distance between the Panel & Eyes of the Inspector: ≥ 30 cm Finger glove (or finger cover) must be worn by the inspector. Inspection table or jig must be anti-electrostatic. # 6.2 Sampling Plan Level II, Normal Inspection, Single Sampling, MIL-STD-105E # 6.3 Criteria & Acceptable Quality Level | Partition | AQL | Definition | | |-----------|------|---|--| | Major | 0.65 | Defects in Pattern Check (Display On) | | | Minor | 1.0 | Defects in Cosmetic Check (Display Off) | | # 6.3.1 Cosmetic Check (Display Off) in Non-Active Area | Check Item | Classification | Criteria | |---------------------------|----------------|---| | Panel
General Chipping | Mi n or | X > 6 mm (Along with Edge) Y > 1 mm (Perpendicular to edge) | | Date : Nov. 12, 2007 | | TECHNICAL SPECIFICATION | | |----------------------|------|-------------------------|---------------| | HYES | OLED | HO12864Y04 | Page 16 of 24 | | 6.3.1 | 6.3.1 Cosmetic Check (Display Off) in Non-Active Area (Continued) | | | | |----------|---|----------|----------------|--| | | Check Item | | Classification | Criteria | | | Panel Crack | | Minor | Any crack is not allowable. | | | Cupper Expose
(Even Pin or Fil | ed
m) | Minor | Not Allowable by Naked Eye
Inspection | | | Film or Trace Dan | nage | Minor | Not Allowable B, Twisted Lead | | | Terminal Lead Tv | wist | Minor | | | | Terminal Lead Bro | oken | Minor | Not Allowable A, Broken Lead | | | Terminal Lead Pro
Mark | ober | Acceptable | | | Date : N | ov. 12, 2007 | | TEC | CHNICAL SPECIFICATION | | Date : Nov | <i>r</i> . 12, 2007 | TECHNICAL SPEC | CIFICATION | | |------------|---------------------|----------------|---------------|--| | HYES | OLED | HO12864Y04 | Page 17 of 24 | | # 6.3.1 Cosmetic Check (Display Off) in Non-Active Area (Continued) | Check Item | Classification | Criteria | |--|----------------|---| | Terminal Lead Bent | Minor | NG if any bent lead cause lead shorting. | | (Not Twist or Broken) | Minor | NG for horizontally bent lead more than 50% of its width. | | Glue or Contamination
on Pin
(Couldn't Be Removed
by Alcohol) | Minor | | | Ink Marking on Back
Side of panel
(Exclude on Film) | Acceptable | Ignore for Any | | Date : Nov | Date : Nov. 12, 2007 TECHNICAL SPECIFICATION | | SIFICATION | |------------|--|------------|---------------| | HYES | OLED | HO12864Y04 | Page 18 of 24 | # 6.3.2 Cosmetic Check (Display Off) in Active Area It is recommended to execute in clear room environment (class 10k) if actual $\dot{}$ in necessary. | Check Item | Classification | Criteria | | |---|----------------|---|--------------------------| | Any Dirt & Scratch on Polarizer's Protective Film | Acceptable | Ignore for not Af
Polarizer | | | Scratches, Fiber, Line-Shape
Defect
(On Polarizer) | Minor | $W \le 0.1$
$W > 0.1, L \le 2$
L > 2 | Ignore $n \le 1$ $n = 0$ | | Dirt, Black Spot, Foreign
Material,
(On Polarizer) | Minor | $\Phi \le 0.1$ $0.1 < \Phi \le 0.25$ $0.25 < \Phi$ | Ignore $n \le 1$ $n = 0$ | | Dont Pubbles White spot | | Φ ≤ 0.5
→ Ignore if no In:
Display
0.5 < Φ | fluence on $n=0$ | | Dent, Bubbles, White spot (Any Transparent Spot on Polarizer) | Minor | | | | Fingerprint, Flow Mark
(On Polarizer) | Minor | Not Allowal | ble | - * Protective film should not be tear off when cosmetic check. - ** Definition of W & L & Φ (Unit: mm): $$\Phi = (a+b)/2$$ | Date : Nov. 12, 2007 | | TECHNICAL SPEC | IFICATION | |----------------------|------|----------------|---------------| | HYES | OLED | HO12864Y04 | Page 19 of 24 | # 6.3.3 Pattern Check (Display On) in Active Area | Check Item | Classification | Criteria | |---------------|----------------|--| | No Display | Major | | | Flicker | Major | Not Allowable | | Missing Line | Major | | | Pixel Short | Major | The same of sa | | Darker Pixel | Major | | | Wrong Display | Major | | | Un-uniform | Major | | | Date : Nov. 12, 2007 | | TECHNICAL SPECIFICATION | | |----------------------|------|-------------------------|---------------| | HYES | OLED | HO12864Y04 | Page 20 of 24 | | Date : Nov. 12, 2007 | | TECHNICAL SPECIFICATION | | |----------------------|------|-------------------------|---------------| | HYES | OLED | HO12864Y04 | Page 21 of 24 | #### 8. Precautions When Using These OEL Display Modules #### 8.1 Handling Precautions - 1) Since the display panel is being made of glass, do not apply mechanical impacts such us dropping from a high position. - 2) If the display panel is broken by some accident and the internal organic substance leaks out, be careful not to inhale nor lick the organic substance. - If pressure is applied to the display surface or its neighborhood of the OEL display module, the cell structure may be damaged and be careful not to apply pressure to these sections. - 4) The polarizer covering the surface of the OEL display module is soft and easily scratched. Please be careful when handling the OEL display module. - 5) When the surface of the polarizer of the OEL display module has soil, clean the surface. It takes advantage of by using following adhesion tape. - * Scotch Mending Tape No. 810 or an equivalent Never try to breathe upon the soiled surface nor wipe the surface using cloth containing solvent such as ethyl alcohol, since the surface of the polarizer will become cloudy. Also, pay attention that the following liquid and solvent may spoil the polarizer: into the system housing. Do not apply excessive stress or pressure to OEL display module. And, do not over bend the film with electrode pattern layouts. These stresses will influence the display performance. Also, secure sufficient rigidity for the outer cases. - 7) Do not apply stress to the LSI chips and the surrounding molded sections. - 8) Do not disassemble nor modify the OEL display module. - 9) Do not apply input signals while the logic power is off. - 10) Pay sufficient attention to the working environments when handing OEL display modules to prevent occurrence of element breakage accidents by static electricity. - * Be sure to make human body grounding when handling OEL display modules. - * Be sure to ground tools to use or assembly such as soldering irons. - * To suppress generation of static electricity, avoid carrying out assembly work under dry environments. - * Protective film is being applied to the surface of the display panel of the OEL display module. Be careful since static electricity may be generated when exfoliating the protective film. - 11) Protection film is being applied to the surface of the display panel and removes | Date : Nov. 12, 2007 | | TECHNICAL SPECIFICATION | | |----------------------|------|-------------------------|---------------| | HYES | OLED | HO12864Y04 | Page 22 of 24 | - the protection film before assembling it. At this time, if the OEL display module has been stored for a long period of time, residue adhesive material of the protection film may remain on the surface of the display panel after removed of the film. In such case, remove the residue material by the method introduced in the above Section 5). - 12) If electric current is applied when the OEL display module is being dewed or when it is placed under high humidity environments, the electrodes may be corroded and be careful to avoid the above. #### 8.2 Storage Precautions - When storing OEL display modules, put them in static electricity preventive bags avoiding exposure to direct sun light nor to lights of fluorescent lamps. and, also, avoiding high temperature and high humidity environment or low temperature (less than 0°C) environments. (We recommend you to store these modules in the packaged state when they were shipped from Univision Technology Inc.) - At that time, be careful not to let water drops adhere to the packages or bags nor let dewing occur with them. - 2) If the tric current is applied when water drops are adhering to the surface of the DEL display module, when the OEL display module is being devel of when it is placed under high humidity environment, the electrodes may be corroded and be sareful about the above. #### **8.3 Designing Precautions** - The absolute maximum ratings are the ratings which cannot be exceeded for OEL display module, and if these values are exceeded, panel damage may be happen. - 2) To prevent occurrence of malfunctioning by noise, pay attention to satisfy the VIL and VIH specifications and, at the same time, to make the signal line cable as short as possible. - 3) We recommend you to install excess current preventive unit (fuses, etc.) to the power circuit (VDD). (Recommend value: 0.5A) - 4) Pay sufficient attention to avoid occurrence of mutual noise interference with the neighboring devices. - 5) As for EMI, take necessary measures on the equipment side basically. - 6) When fastening the OEL display module, fasten the external plastic housing section. - 7) If power supply to the OEL display module is forcibly shut down by such errors as taking out the main battery while the OEL display panel is in operation, we cannot guarantee the quality of this OEL display module. - 8) The electric potential to be connected to the rear face of the IC chip should be as follows: SSD1325 - * Connection (contact) to any other potential than the above may lead to rupture of the IC. | Date : Nov. 12, 2007 | | TECHNICAL SPECIFICATION | | |----------------------|------|-------------------------|---------------| | HYES | OLED | HO12864Y04 | Page 23 of 24 | ## 8.4 Precautions when disposing of the OEL display modules Request the qualified companies to handle industrial wastes when disposing of the OEL display modules. Or, when burning them, be sure to observe the environmental and hygienic laws and regulations. #### 8.5 Other Precautions - When an OEL display module is operated for a long of time with fixed pattern may remain as an after image or slight contrast deviation may occur. Nonetheless, if the operation is interrupted and left unused for a while, normal state can be restored. Also, there will be no problem in the reliability of the module. - 2) To protect OEL display modules from performance drops by static electricity rapture, etc., do not touch the following sections whenever possible while handling the OEL display modules. - * Pins and electrodes - * Pattern layouts such as the TCP & FPC - 3) With this OEL display module, the OEL driver is being exposed. Generally speaking, semiconductor elements change their characteristics when light is characteristic according to the principle of the solar battery. Consequently, if this OEL driver them sed to light, malfurething may occur. - * Design the purplies and installation nethod so that the DEL drive hay be shielded from light in actual sage. - * Design the product and installation method so that the OEL driver may be shielded from light during the inspection processes. - 4) Although this OEL display module stores the operation state data by the commands and the indication data, when excessive external noise, etc. enters into the module, the internal status may be changed. It therefore is necessary to take appropriate measures to suppress noise generation or to protect from influences of noise on the system design. - 5) We recommend you to construct its software to make periodical refreshment of the operation statuses (re-setting of the commands and re-transference of the display data) to cope with catastrophic noise. | Date : Nov. 12, 2007 | | TECHNICAL SPECIFICATION | | |----------------------|------|-------------------------|---------------| | HYES | OLED | HO12864Y04 | Page 24 of 24 |