

SOT-23

TSM2323 20V P-Channel MOSFET

PRODUCT SUMMARY

Pin Definition: 1. Gate 2. Source 3. Drain	V _{DS} (V)	R _{DS(on)} (mΩ)	I _D (A)
		39 @ V _{GS} = -4.5V	-4.7
	-20	52 @ V _{GS} = -2.5V	-4.1
		68 @ V _{GS} = -1.8V	-2.0

Features

- Advance Trench Process Technology
- High Density Cell Design for Ultra Low On-resistance

Application

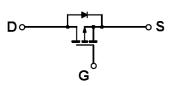
- Load Switch
- PA Switch

Ordering Information

Part No.	Package	Packing
TSM2323CX RF	SOT-23	3Kpcs / 7" Reel

Absolute Maximum Rating (Ta = 25°C unless otherwise noted)

Parameter		Symbol	Limit	Unit	
Drain-Source Voltage		V _{DS}	-20	V	
Gate-Source Voltage		V _{GS}	±8	V	
Continuous Drain Current, V _{GS} @4.5V.		I _D	-4.7	А	
Pulsed Drain Current, V _{GS} @4.5V		I _{DM}	-20	А	
Continuous Source Current (Diode Conduction) ^{a,b}		I _S	-1.0	А	
Maximum Dawar Dissinction	Ta = 25°C	P _D	1.25	W	
Maximum Power Dissipation	Ta = 70°C		0.8		
Operating Junction Temperature		TJ	+150	°C	
Operating Junction and Storage Temperature Range		T _J , T _{STG}	- 55 to +150	°C	


Thermal Performance

Parameter	Symbol	Limit	Unit
Junction to Case Thermal Resistance	Rθ _{JC}	75	°C/W
Junction to Ambient Thermal Resistance (PCB mounted)	Rθ _{JA}	250	°C/W

Notes:

a. Surface Mounted on 1" x 1" FR4 Board.

b. Pulse width limited by maximum junction temperature

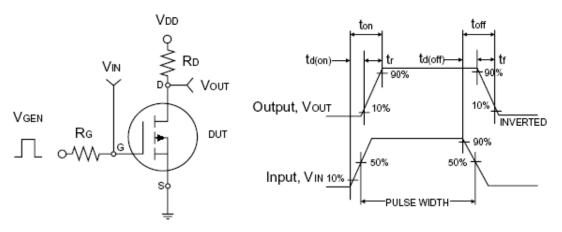
Block Diagram

P-Channel MOSFET

Electrical Specifications

ANCE

COMF

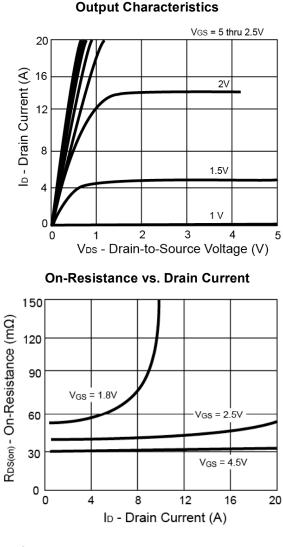

Parameter	Conditions	Symbol	Min	Тур	Max	Unit	
Static		1				1	
Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_{D} = -250uA$	BV _{DSS}	-20			V	
Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 uA$	V _{GS(TH)}	-0.4		-1.0	V	
Zero Gate Voltage Drain Current	V_{DS} = -16V, V_{GS} = 0V	I _{DSS}			-1.0	uA	
Gate Body Leakage	V_{GS} = ±8V, V_{DS} = 0V	I _{GSS}			±100	nA	
On-State Drain Current	V _{DS} ≤-5V, V _{GS} = -4.5V	I _{D(ON)}	-20			А	
	V_{GS} = -4.5V, I_{D} = -4.7A		31 39		39		
Drain-Source On-State Resistance	V_{GS} = -2.5V, I_{D} = -4.1A	R _{DS(ON)}		41	52	mΩ	
	V _{GS} = -1.8V, I _D = -2.0A		54 6		68]	
Forward Transconductance	V _{DS} = - 5V, I _D = - 4.7A	g _{fs}		16		S	
Diode Forward Voltage	I _S = - 1.0A, V _{GS} = 0V	V _{SD}		- 0.7	-1.2	V	
Dynamic [♭]					_	-	
Total Gate Charge	V _{DS} = -10V, I _D = -4.7A,	Qg		12.5	19		
Gate-Source Charge	$V_{DS} = -10V, I_D = -4.7 \text{ A},$ $V_{GS} = -4.5 \text{ V}$	Q_gs		1.7		nC	
Gate-Drain Charge	V _{GS} 4.5V	Q_gd		3.3			
Input Capacitance	V _{DS} = -10V, V _{GS} = 0V,	C _{iss}		1020			
Output Capacitance	$v_{DS} = -10V, v_{GS} = 0V,$ f = 1.0MHz	C _{oss}		191		pF	
Reverse Transfer Capacitance	1 - 1.010112	C _{rss}		140			
Switching ^c							
Turn-On Delay Time		t _{d(on)}		25	40		
Turn-On Rise Time	$V_{DD} = -10V, R_L = 10\Omega,$ $I_D = -1A, V_{GEN} = -4.5V,$	t _r		43	65	20	
Turn-Off Delay Time	$R_{\rm G} = 6\Omega$	t _{d(off)}		71	110	nS	
Turn-Off Fall Time	1\G = 012	t _f		48	75		

Notes:

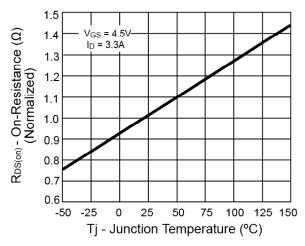
a. pulse test: PW \leq 300µS, duty cycle \leq 2%

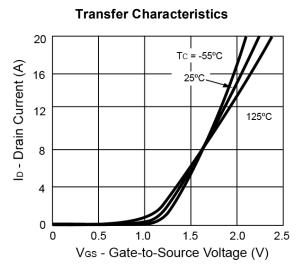
b. For DESIGN AID ONLY, not subject to production testing.

b. Switching time is essentially independent of operating temperature.

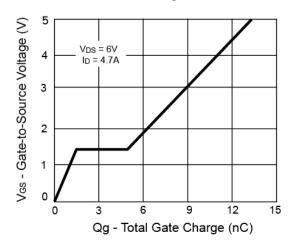


Switching Test Circuit

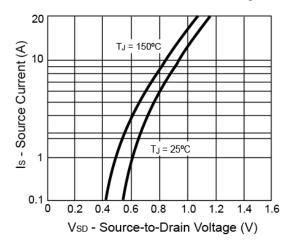

Switchin Waveforms



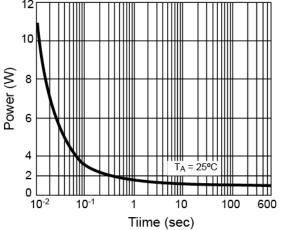
Electrical Characteristics Curve (Ta = 25°C, unless otherwise noted)

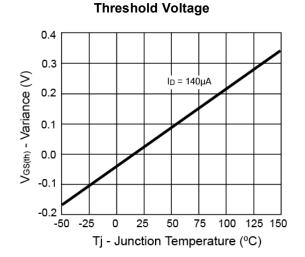


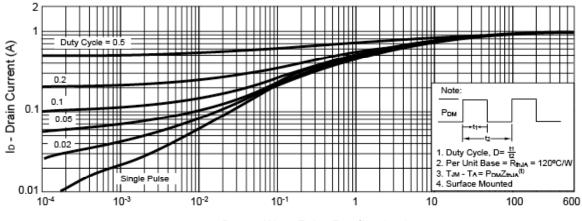
On-Resistance vs. Junction Temperature



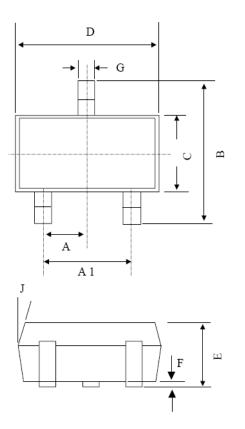
Gate Charge

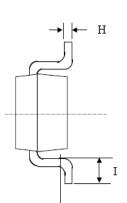

Source-Drain Diode Forward Voltage



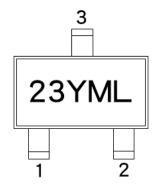

Electrical Characteristics Curve (Ta = 25°C, unless otherwise noted)

On-Resistance vs. Gate-Source Voltage 0.15 $R_{DS(on)}$ - On-Resistance (Ω) 0.12 I_D = 4.7A 0.09 $I_D = 2A$ 0.06 0.03 0 3 4 0 1 2 5 VGs - Gate-to-Source Voltage (V) Single Pulse Power 12


Normalized Thermal Transient Impedance, Junction-to-Ambient



Square Wave Pulse Duration (sec)


SOT-23 Mechanical Drawing

SOT-23 DIMENSION					
DIM	MILLIMETERS		INCHES		
	MIN	MAX	MIN	MAX.	
А	2.88	2.91	0.113	0.115	
В	0.39	0.42	0.015	0.017	
С	1.78	2.03	0.070	0.080	
D	0.51	0.61	0.020	0.024	
E	1.59	1.66	0.063	0.065	
F	1.04	1.08	0.041	0.043	
G	0.07	0.09	0.003	0.004	

Marking Diagram

- 23 = Device Code
 Y = Year Code
 M = Month Code
 (A=Jan, B=Feb, C=Mar, D=Apl, E=May, F=Jun, G=Jul, H=Aug, I=Sep, J=Oct, K=Nov, L=Dec)
- L = Lot Code

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.