
# SK 8 GD 126



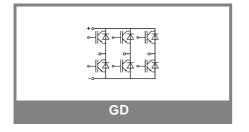
SEMITOP® 2

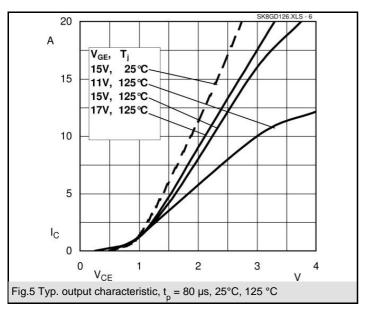
## **IGBT** Module

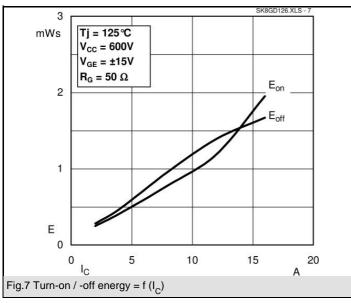
#### SK 8 GD 126

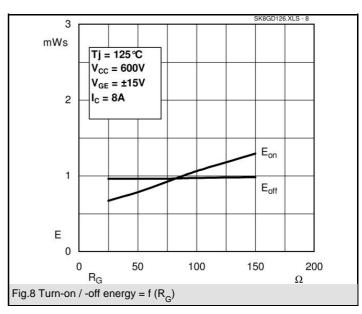
**Preliminary Data** 

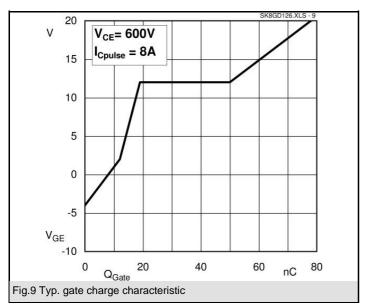
#### **Features**


- Fast Trench IGBTs
- Soft freewheeling diodes in CAL High Density technology
- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)

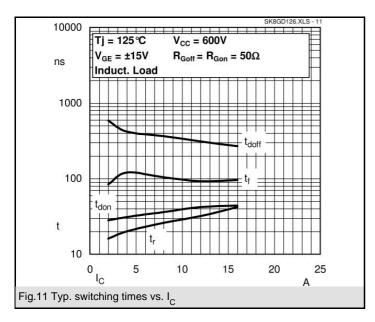

### **Typical Applications**

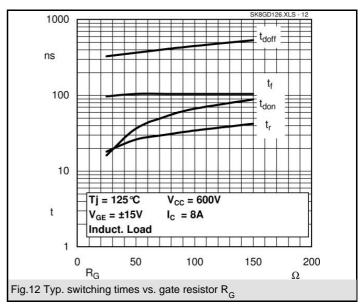

- Switching ( not for linear use )
- Inverter
- Switched mode power supplies
- UPS

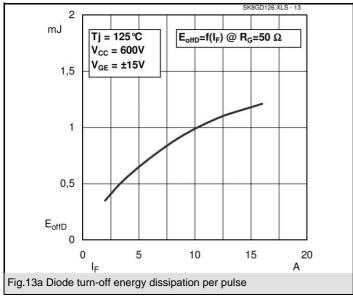

| Absolute Maximum Ratings       |                                                        | T <sub>s</sub> = 25 °C, unless otherwise specified |       |  |  |  |  |  |
|--------------------------------|--------------------------------------------------------|----------------------------------------------------|-------|--|--|--|--|--|
| Symbol                         | Conditions                                             | Values                                             | Units |  |  |  |  |  |
| IGBT                           |                                                        |                                                    |       |  |  |  |  |  |
| $V_{CES}$                      |                                                        | 1200                                               | V     |  |  |  |  |  |
| $V_{GES}$                      |                                                        | ± 20                                               | V     |  |  |  |  |  |
| I <sub>C</sub>                 | $T_s = 25 (80) ^{\circ}C;$                             | 15 (10)                                            | Α     |  |  |  |  |  |
| I <sub>CM</sub>                | $t_p < 1 \text{ ms; } T_s = 25 (80) ^{\circ}\text{C;}$ | 30 (20)                                            | Α     |  |  |  |  |  |
| $T_{j}$                        |                                                        | - 40 <b>+</b> 150                                  | °C    |  |  |  |  |  |
| Inverse/Freewheeling CAL diode |                                                        |                                                    |       |  |  |  |  |  |
| I <sub>F</sub>                 | T <sub>s</sub> = 25 (80) °C;                           | 13 (9)                                             | Α     |  |  |  |  |  |
| $I_{FM} = -I_{CM}$             | $t_p < 1 \text{ ms}; T_s = 25 (80) ^{\circ}\text{C};$  | 26 (18)                                            | Α     |  |  |  |  |  |
| $T_{j}$                        |                                                        | - 40 <b>+</b> 150                                  | °C    |  |  |  |  |  |
| T <sub>stg</sub>               |                                                        | - 40 <b>+</b> 125                                  | °C    |  |  |  |  |  |
| T <sub>sol</sub>               | Terminals, 10 s                                        | 260                                                | °C    |  |  |  |  |  |
| $V_{\rm isol}$                 | AC 50 Hz, r.m.s. 1 min. / 1 s                          | 2500 / 3000                                        | V     |  |  |  |  |  |

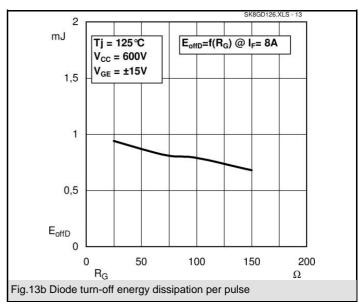

| Characteristics                    |                                                              | T <sub>s</sub> = 25 °C, unless otherwise specified |           |         |       |  |  |
|------------------------------------|--------------------------------------------------------------|----------------------------------------------------|-----------|---------|-------|--|--|
| Symbol                             | Conditions                                                   | min.                                               | typ.      | max.    | Units |  |  |
| IGBT                               |                                                              |                                                    |           |         |       |  |  |
| V <sub>CE(sat)</sub>               | $I_C = 8 \text{ A}, T_j = 25 (125) ^{\circ}\text{C}$         |                                                    | 1,7 (2)   | 2,1     | V     |  |  |
| $V_{GE(th)}$                       | $V_{CE} = V_{GE}$ ; $I_{C} = 0,0003 \text{ A}$               | 5                                                  | 5,8       | 6,5     | V     |  |  |
| C <sub>ies</sub>                   | $V_{CE} = 25 \text{ V}; V_{GE} = 0 \text{ V}; 1 \text{ MHz}$ |                                                    | 0,7       |         | nF    |  |  |
| R <sub>th(j-s)</sub>               | per IGBT                                                     |                                                    |           | 2       | K/W   |  |  |
|                                    | per module                                                   |                                                    |           |         | K/W   |  |  |
|                                    | under following conditions:                                  |                                                    |           |         |       |  |  |
| t <sub>d(on)</sub>                 | $V_{CC} = 600 \text{ V}$ , $V_{GE} = \pm 15 \text{ V}$       |                                                    | 85        |         | ns    |  |  |
| t <sub>r</sub>                     | I <sub>C</sub> = 8 A, T <sub>j</sub> = 125 °C                |                                                    | 30        |         | ns    |  |  |
| t <sub>d(off)</sub>                | $R_{Gon} = R_{Goff} = 50 \Omega$                             |                                                    | 430       |         | ns    |  |  |
| t <sub>f</sub>                     |                                                              |                                                    | 90        |         | ns    |  |  |
| E <sub>on</sub> + E <sub>off</sub> | Inductive load                                               |                                                    | 1,9       |         | mJ    |  |  |
| Inverse/Freewheeling CAL diode     |                                                              |                                                    |           |         |       |  |  |
| $V_F = V_{EC}$                     | I <sub>F</sub> = 8 A; T <sub>i</sub> = 25 (125) °C           |                                                    | 1,9 (2)   | 2 (2,4) | V     |  |  |
| V <sub>(TO)</sub>                  | $T_j = (125) ^{\circ}C$ $T_i = (125) ^{\circ}C$              |                                                    | 1 (0,8)   | 1,1     | V     |  |  |
| r <sub>T</sub>                     | $T_{j} = (125)  ^{\circ}C$                                   |                                                    | 112 (150) | 138     | mΩ    |  |  |
| $R_{th(j-s)}$                      |                                                              |                                                    |           | 2,8     | K/W   |  |  |
|                                    | under following conditions:                                  |                                                    |           |         |       |  |  |
| I <sub>RRM</sub>                   | I <sub>F</sub> = 8 A; V <sub>R</sub> = 600 V                 |                                                    | 9,4       |         | Α     |  |  |
| $Q_{rr}$                           | $dI_F/dt = 300 A/\mu s$                                      |                                                    | 1,5       |         | μC    |  |  |
| E <sub>off</sub>                   | V <sub>GE</sub> = 0 V; T <sub>j</sub> = 125 °C               |                                                    | 0,6       |         | mJ    |  |  |
| Mechanical data                    |                                                              |                                                    |           |         |       |  |  |
| M1                                 | mounting torque                                              |                                                    |           | 2       | Nm    |  |  |
| w                                  |                                                              |                                                    | 21        |         | g     |  |  |
| Case                               | SEMITOP® 2                                                   |                                                    | T 47      |         |       |  |  |



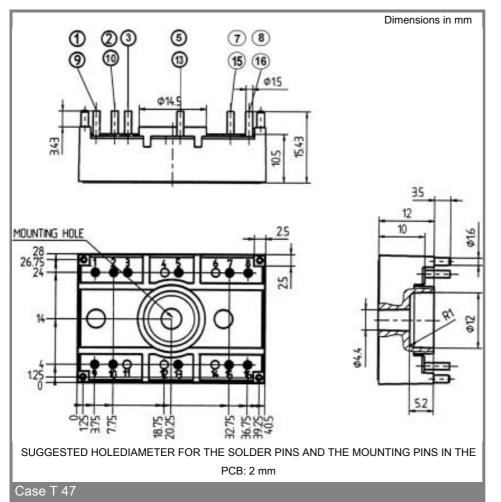


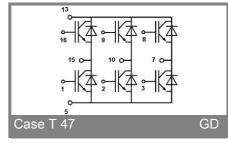




# SK 8 GD 126








# SK 8 GD 126





This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.