SK 8 GD 126 SEMITOP® 2 ## **IGBT** Module #### SK 8 GD 126 **Preliminary Data** #### **Features** - Fast Trench IGBTs - Soft freewheeling diodes in CAL High Density technology - · Compact design - · One screw mounting - Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB) ### **Typical Applications** - Switching (not for linear use) - Inverter - Switched mode power supplies - UPS | Absolute Maximum Ratings | | T _s = 25 °C, unless otherwise specified | | | | | | | |--------------------------------|--|--|-------|--|--|--|--|--| | Symbol | Conditions | Values | Units | | | | | | | IGBT | | | | | | | | | | V_{CES} | | 1200 | V | | | | | | | V_{GES} | | ± 20 | V | | | | | | | I _C | $T_s = 25 (80) ^{\circ}C;$ | 15 (10) | Α | | | | | | | I _{CM} | $t_p < 1 \text{ ms; } T_s = 25 (80) ^{\circ}\text{C;}$ | 30 (20) | Α | | | | | | | T_{j} | | - 40 + 150 | °C | | | | | | | Inverse/Freewheeling CAL diode | | | | | | | | | | I _F | T _s = 25 (80) °C; | 13 (9) | Α | | | | | | | $I_{FM} = -I_{CM}$ | $t_p < 1 \text{ ms}; T_s = 25 (80) ^{\circ}\text{C};$ | 26 (18) | Α | | | | | | | T_{j} | | - 40 + 150 | °C | | | | | | | T _{stg} | | - 40 + 125 | °C | | | | | | | T _{sol} | Terminals, 10 s | 260 | °C | | | | | | | $V_{\rm isol}$ | AC 50 Hz, r.m.s. 1 min. / 1 s | 2500 / 3000 | V | | | | | | | Characteristics | | T _s = 25 °C, unless otherwise specified | | | | | | |------------------------------------|--|--|-----------|---------|-------|--|--| | Symbol | Conditions | min. | typ. | max. | Units | | | | IGBT | | | | | | | | | V _{CE(sat)} | $I_C = 8 \text{ A}, T_j = 25 (125) ^{\circ}\text{C}$ | | 1,7 (2) | 2,1 | V | | | | $V_{GE(th)}$ | $V_{CE} = V_{GE}$; $I_{C} = 0,0003 \text{ A}$ | 5 | 5,8 | 6,5 | V | | | | C _{ies} | $V_{CE} = 25 \text{ V}; V_{GE} = 0 \text{ V}; 1 \text{ MHz}$ | | 0,7 | | nF | | | | R _{th(j-s)} | per IGBT | | | 2 | K/W | | | | | per module | | | | K/W | | | | | under following conditions: | | | | | | | | t _{d(on)} | $V_{CC} = 600 \text{ V}$, $V_{GE} = \pm 15 \text{ V}$ | | 85 | | ns | | | | t _r | I _C = 8 A, T _j = 125 °C | | 30 | | ns | | | | t _{d(off)} | $R_{Gon} = R_{Goff} = 50 \Omega$ | | 430 | | ns | | | | t _f | | | 90 | | ns | | | | E _{on} + E _{off} | Inductive load | | 1,9 | | mJ | | | | Inverse/Freewheeling CAL diode | | | | | | | | | $V_F = V_{EC}$ | I _F = 8 A; T _i = 25 (125) °C | | 1,9 (2) | 2 (2,4) | V | | | | V _(TO) | $T_j = (125) ^{\circ}C$ $T_i = (125) ^{\circ}C$ | | 1 (0,8) | 1,1 | V | | | | r _T | $T_{j} = (125) ^{\circ}C$ | | 112 (150) | 138 | mΩ | | | | $R_{th(j-s)}$ | | | | 2,8 | K/W | | | | | under following conditions: | | | | | | | | I _{RRM} | I _F = 8 A; V _R = 600 V | | 9,4 | | Α | | | | Q_{rr} | $dI_F/dt = 300 A/\mu s$ | | 1,5 | | μC | | | | E _{off} | V _{GE} = 0 V; T _j = 125 °C | | 0,6 | | mJ | | | | Mechanical data | | | | | | | | | M1 | mounting torque | | | 2 | Nm | | | | w | | | 21 | | g | | | | Case | SEMITOP® 2 | | T 47 | | | | | # SK 8 GD 126 # SK 8 GD 126 This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX. This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.