|nte| PRELIMINARY

80130/80130-2
iAPX 86/30, 88/30, 186/30, 188/30
iIRMX 86 OPERATING SYSTEM PROCESSORS

o High-Performance 2-Chip Data Types: Jobs, Tasks, Segments,
Processors Containing Operating Mailboxes, Regions
System Primitives = 35 Operating System Primitives

s Standard iAPX 86/10, 88/10 Instruction » Built-In Operating System Timers and
Set Plus Task Management, Interrupt Interrupt Control Logic Expandable
Management, Message Passing, From 8 to 57 Interrupts
i}{"ch:-""'z,f:-'°'-‘t?"d Memory = 8086/80150/80150-2/8088/80186/80188

ocation Primitives)] Compatibie At Up To 8 MHz Without

= Fully Extendable To and Compatible With Wait States

iRMX* 86 = MULTIBUS® System Compatible Interface

= Supports Five Operating System Data

The Intel iAPX 86/30 and iAPX 88/30 are two-chip microprocessors offering general-purpose CPU (8086)
instructions combined with real-time operating system support. They provide a foundation for multiprogram-
ming and multitasking applications. The iAPX 86/30 consists of an iAPX 86/10 (16-bit 8086 CPU) and an
Operating System Firmware (OSF) component (80130). The 88/30 consists of the OSF and an iAPX 88/10 (8-bit
8088 CPU). (80186 or 80188 CPUs may be used in place of the 8086 or 8088.)

Both components of the 86/30 and 88/30 are implemented in N-channel, depletion-load, silicon-gate technol-
ogy&ﬂ@and are housed in 40-pin packages. The 86/30 and 88/30 provide all the functions of the iAPX 86/10,
88/10 processors plus 35 operating system primitives, hardware support for eight interrupts, a system timer, a
delay timer and a baud rate generator.

| 8088 |
PROGRAM DATA
‘ erocx 8086 | MEMORY MEMORY
r‘ I:I H | INTERRUPT STATUS |
8264A ‘ l
cLock Us
LOCAL BUS
DRIVER car INTERFACE SYSTEM BUS
RDY ’
INTERRUPT __ STATUS |
| CSLIR
—» CLOCK 80130 INTERRUPT PERIPHERAL
| REQUESTS

ACKNOWLEDGE ‘ ﬁ
BAUD RATE DELAY SYSTEM iAPX 8630, 86/30
TIMER TIMER TIMER

Figure 1. iAPX 86/30, 88/30 Block Diagram

Intel Corporation Assumes No Responsibilty for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit Patent Licenses ave implied.
@ INTEL CORPORATION, 1981 OCTOBER 1981
3-198 210216-002

80130/80130-2

iAPX 86/30, 88/30, 186/30, 188/30

PRELIMINARY

MAX MAX
MODE MODE
T 8086 8088
Vss E 1 _/ 40 Veo VSSE 1 v 40 j Vee
#0147 2 39 [apts @1 ap1a[|2 3 [ao1s (a1
ap13[]a [Jane @1y a0]s s] aters3
Aoz [} 4 37 [Jwr w13 ap2[s a7 [] arzisa
AD11 E 5 36 IR6 (A11) ADT1 E 5 36 : A18/S5
w010 ¢ [Jms 10 o[_|s 3 [] areise
ADS E 7 34 : R4 (AB) ADQE 7 34 j BHE/S7 (HIGH)
aoe [3 Jms e ave[s . 33 [] mim
207 [o 32] m2 ap7[e soa6 2 Jm
408 [} 10 w0 51 [m aos[_f 10 “c‘:? 3t [7] maave
aps [11 30 [] o aps] n 30 [] RarGT
aba[] 12 29[y Ava [12 29 [] ook
AD3[| 13 w[|5 aa[13 2w |8
a02[s 27 [)&t ap2[} 1 LARE
AD1|:15 2ej§6 AD1E15 2 :’s‘u
a0 [T1e 25 |] AeK ADO [: 16 25 [Jaso
wmemcs [17 2 [| TR w7 2 [Jast
ocs[s 22|] svsiex intR [| 18 = | ves
ok [Te 22|] oevar ek [1e 22| Jneapy °
vss [20 21[] saup vss [20 21| | meser
Figure 2. iAPX 86/30, 88/30 Pin Configuration
Table 1. 80130 Pin Description
Symbol Type | Name and Function
AD{5-ADg [lfe] Address Data: These pins constitute the time multiplexed memory address (Tq) and
data (Tp, T3, Tw, T4) bus. These lines are active HIGH. The address presented during T¢ of
a bus cycle will be latched internally and interpreted as an 80130 internal address if
MEMCS or IOCS is active for the invoked primitives. The 80130 pins float whenever it is
not chip selected, and drive these pins only during T,-T4 of aread cycleandTq of anINTA
cycle.
BHE/S; Bus High Enable: The 80130 uses the BHE signal from the processor to determine
' whether to respond with data on the upper or lower data pins, or both. The signal is active
LOW. BHE is latched by the 80130 on the trailing edge of ALE. It controls the 80130 output
data as shown.
BHE Ag
0 0 Word on AD45-ADy
0 1 Upper byte on AD{5-ADg
1 0 Lower byte on AD7~ADy
. 1 1 Upper byte on ADz-ADg
8—2, S_1—S_°' 1 Status: For the 80130, the status pins are used as inputs only. 80130 encoding follows:
S2 S1 S
0 0 0 INTA
0 0 1 IORD
0 1 0 IOWR
0 1 1 Passive
1 0 0 Instruction fetch
1 0 1 MEMRD
1 1 X Passive

3-199

210216-002

\.

80130/80130-2 PRELIMINARY

iAPX 86/30, 88/30, 186/30, 188/30

Table 1. 80130 Pin Description (Continued)

Symbol Type Name and Function

CLK | Clock: The system clock provides the basic timing for the processor and bus controller.
It is asymmetric with a 33% duty cycle to provide optimized internal timing. The 80130
uses the system clock as an input to the SYSTICK and BAUD timers and to synchronize
operation with the host CPU.

INT (o] Interrupt: INT is HIGH whenever a valid interrupt request is asserted. Itis normally used
to interrupt the CPU by connecting it to INTR.

IR7-IRg | Interrupt Requests: An interrupt request can be generated by raising an IR input (LOW
to HIGH) and holding it HIGH until it is acknowledged (Edge-Triggered Mode), or justby a
HIGH levet on an IR input (Level-Triggered Mode).

ACK (o] Acknowledge: This line is LOW whenever an 80130 resource is being accessed. It is also
LOW during the first INTA cycle and second INTA cycle if the 80130 is supplying the
interrupt vector information. This signal can be used as a bus ready acknowledgement
and/or bus transceiver control.

MEMCS | Memory Chip Select: This input must be driven LOW when a kernel primitive is being
fetched by the CPU. AD3~ADg are used to select the instruction.

10CS | Input/Output Chip Select: When this input is low, during an IORD or IOWR cycle, the
80130's kernel primitives are accessing the appropriate peripheral function as specified
by the foilowing table:

BHE Az Az Ay A
0 X X X X Passive
X X X X 1 Passive
X 0 1 X X Passive
1 0 0 X 0 interrupt Controller
1 1 0 o 0 Systick Timer
1 1 0 1 0 Delay Counter
1 1 1 0 0 Baud Rate Timer
1 1 1 1 0 Timer Control

LIR o Local Bus Interrupt Request: This signal is LOW when the interrupt request is for a
non-slave input or slave input programmed as being a local slave.

Vee Power: V¢ is the +5V supply pin.

Vss Ground: Vgg is the ground pin.

SYSTICK o] System Clock Tick: Timer 0 Output. Operating System Clock Reference. SYSTICK is
normally wired to !R2 to implement operating system timing interrupt.

DELAY o] DELAY Timer: Output of timer. 1. Reserved by Intel Corporation for future use.

BAUD o} Baud Rate Generator: 8254 Mode 3 compatible output. Output of 80130 Timer 2.

FUNCTIONAL DESCRIPTION

The increased performance and memory space of
iAPX 86/10 and 88/10 microprocessors have proven
sufficient to handle most of today's single-task or
single-device control applications with performance
to spare, and have led to the increased use of these
microprocessors to control multiple tasks or devices
in real-time. This trend has created a new challenge
to designers—development of real-time, multitask-
ing application systems and software. Examples of
such systems include control systems that monitor
and react to external events in real-time, multifunc-
tion desktop and personal computers, PABX equip-

3-200

ment which constantly controls the telephone traffic
in a multiphone office, file servers/disk subsystems
controlling and coordinating muitiple disks and mul-
tiple disk users, and transaction processing systems
such as electronics funds transfer.

The iAPX 86/30, 88/30 Operating System
Processors

The Intel iAPX 86/30, 88/30 Operating System Pro-
cessors (OSPs) were developed to help solve this

210216-002

80130/80130-2
iAPX 86/30, 88/30, 186/30, 188/30

PRELIMINARY

T T T T T T T T T T T T T T e e e s e -
{ OPERATING SYSTEM UNIT |
| r
| |
| Do 7 |
I - | 8
: PROGRAMMABLE
| 'NTLZZ'T(‘:JPT | INTERRUPT INPUTS
| t
>
| . 0
: I INTERRUPT OUT
| CONTROL :
X STORE i
' < :
|
| SYSTEM H——» SYSTEM
| TIMER !
! I
|
] [
D8-15 |
! L~ DELAY H—— OELAY
l > TIMER
| I L]
| |
| |
1 J !
| - |
] _ BAUD RATE > BAUD RATE
| I GENERATOR |
| Sh— |
b
e [niantorl R i S S —
| i
| |
| [#—— cLock
I
| 3
| DATA 8Us
TAT
.l BUFFER INTERFACE ii STATUS
<= 2 AND .
| ADDRESS CONTROL é:tb BUS CONTROL
ADDRESS. | LATCH T
DATA BUS | .
LOCAL
I | INTERRUPT
L CONTROL UNIT | TR

Figure 3. OSF internal Block Diagram

problem. Their goal is to simplify the design of multi-
tasking application systems by providing a well-
defined, fully debugged set of operating system
primitives implemented directly in the hardware,
thereby removing the burden of designing multitask-
ing operating system primitives from the application
programmer.

Both the 86/30 and the 88/30 OSPs are two-chip sets
consisting of a main processor, an 8086 or 8088 CPU,
and the Intel 80130, Operating System Firmware
component (OSF) (see Figure 1). The 80130 provides
a set of muititasking kernel primitives, kernel control
storage, and the additional support hardware, in-
cluding system timers and interrupt control, re-
quired by these primitives. From the application
programmer’s viewpoint, the OSF extends the base
iAPX 86, 88 architecture by providing 35 operating
system primitive instructions, and supporting five
new system data types, making the OSF a logical and

easy-to-use architectural extension to iAPX 86, 88
system designs.

The OSP Approach

The OSP system data types (SDTs) and primitive in-
structions allocate, manage and share low-level pro-
cessor resources in an efficient manner. For
example, the OSP implements task context manage-
ment (managing a task state image consisting of
both hardware register set and software control in-
formation) for either the basic 86/10 context or the
extended 86/20 (8086+8087) numerics context. The
OSP manages the entire task state image both while
the task is actively executing and while it is inactive.
Tasks can be created, put to sleep for specified peri-
ods, suspended, executed to perform their func-
tions, and dynamically deleted when their functions
are complete.

210216-002

intel

80130/80130-2
iAPX 86/30, 88/30, 186/30, 188/30

PRELIMINARY

The Operating System Processors support event-
oriented systems designs. Each event may be pro-
cessed by an individual responding task or along
with other closely related events in a common task.
External events and interrupts are processed by the
OSP interrupt handler primitives using its built-in
interrupt controller subsystem as they occur in real-
time. The multiple tasks and the multiple events are
coordinated by the OSP integral scheduler whose
preemptive, priority-based scheduling algorithm
and system timers organize and monitor the process-
ing of every task to guarantee that events are pro-
cessed as they occur in order of relative importance.
The 86/30 also provides primitives for intertask com-
munication (by mailboxes) and for mutual exclusion
(by regions), essential functions for multitasking
applications.

Programming Language Support

Programs for the OSP can be written in ASM 86/88 or
PL/M 86/88, Intel's standard system languages for
iAPX 86,88 systems.

The Operating System Processor Support Package
(iOSP 86) provides an interface library for applica-
tion programs written in any model of PL/M-86. This
library also provides 80130 configuration and in-
itialization support as well as complete user
documentation.

OSF PROGRAMMING INTERFACE

The OSF provides 35 operating system kernel
primitives which implement muititasking, interrupt
management, free memory management, intertask
communication and synchronization. Table 4 shows
each primitive, and Table 5 gives the execution per-
formance of typical primitives. .

OSP primitives are executed by a combination of
CPU and OSF (80130) activity. When an OSP primi-
tive is called by an application program task, the
iAPX CPU registers and stacks are used to perform
the appropriate functions and reiay the results to the
application programs.

OSP Primitive Calling Sequences

A standard, stack-based, calling sequence is used to
invoke the OSF primitives. Before a primitive is
called, its operand parameters must be pushed on
the task stack. The Sl register is loaded with the
offset of the last parameter on the stack. The entry
code for the primitive is loaded into AX. The primitive
invocation call is made with a CPU software interrupt

3-202

(Table 4). A representative ASM86 sequence for call-
ing a primitive is shown in Figure 4. In PL/M the OSP
programmer uses a call to invoke the primitive.

SAMPLE ASSEMBLY LANGUAGE PRIMITIVE CALL

PUSH P
PUSH P,

;PUSH PARAMETER 1
;PUSH PARAMETER 2

{PUSH PARAMETER N
'STACK CALLING CONVENTION

PUSH Py
PUSH BP
MOV BP,SP
LEA SI,5S:NUM__BYTES__PARAM - 2|BP|
;88:81 POINTS TO FIRST
;PARAMETER ON STACK
MOV AX, ENTRY CODE :AX SETS PRIMITIVE ENTRY CODE
INT 184 ;OSF INTERRUPT

OSP PRIMITIVE INVOKED

PQP BP
RET NUM_BYTES__PARAM__ ;POP PARAMETERS
:CX CONTAINS EXCEPTION CODES
;DL CONTAINS PARAMETER NUMBER

THAT CAUSED EXCEPTION (IF

CX IS NON ZERO)
;AX CONTAINS WORD RETURN VALUE
;ES:BX CONTAINS POINTER

RETURN VALUE

Figure 4. ASM/86 OSP Calling Convention

OSP Functional Description

Each major function of the OSP is described below.
These are:

Job and Task Management
interrupt Management
Free Memory Management
Intertask Communication
Intertask Synchronization
Environmental Control

The system data types (or SDTs) supported by the
OSP are capitalized in the description. A short
description of each SDT appears in Table 2.

JOB and TASK Management

Each OSP JOB is a controlled environment in which
the applications program executes and the OSF sys-
tem data types reside. Each individual application
program is normally a separate OSP JOB, whether it
has one initial task (the minimum) or multiple tasks.
JOBs partition the system memory into pools. Each
memory pool provides the storage areas in which the
OSP will allocate TASK state images and other sys-
tem data types created by the executing TASKSs, and
free memory for TASK working space. The OSP sup-
ports multiple executing TASKs within a JOB by
managing the resources used by each, including the
CPU registers, NPX registers, stacks, the system data
types, and the available free memory space pool.

210216-002

intel

80130/80130-2
iAPX 86/30, 88/30, 186/30, 188/30

PRELIMINARY

When a TASK is created, the OSP allocates memory
(from the free memory of its JOB environment) for
the TASK's stack and data area and initializes the
additional TASK attributes such as the TASK priority
level and its error handler location. (As an option, the
caller of CREATE TASK may assign previously
defined stack and data areas to the TASK.) Task
priorities are integers between 0 and 255 (the lower
the priority number the higher the scheduling
priority of the TASK). Generally, priorities up to 128
will be assigned to TASKs which are to process inter-
rupts. Priorities above 128 do not cause interrupts to
be disabled, these priorities (129 to 255) are appro-
priate for non-interrupt TASKs. if an 8087 Numerics
Processor Extension is used, the error recovery inter-
rupt level assigned to it will have a higher priority
than a TASK executing on it, so that error handling is
performed correctly.

EXECUTION STATUS

ATASK has an execution status or execution state.
The OSP provides five execution states: RUNNING,
READY, ASLEEP, SUSPENDED, and ASLEEP-
SUSPENDED.

— ATASK is RUNNING if it has control of the
processor. :

— ATASK is READY if it is not asleep, suspended, or
asleep-suspended. For a TASK to become the run-
ning (executing) TASK, it must be the highest
priority TASK in the ready state.

— ATASK is ASLEEP if it is wafting for a request to
be granted or a timer event to occur. A TASK may
put itself into the ASLEEP state.

— ATASK is SUSPENDED if it is placed there by
another TASK or if it suspends itself. A TASK may
have multiple suspensions, the count of suspen-
sions is managed by the OSP as the TASK suspen-
sion depth.

— A TASK is ASLEEP-SUSPENDED if it is both
waiting and suspended.

TASK attributes, the CPU register values, and the
8087 register values (if the 8087 is configured into
the application) are maintained by the OSP in the
TASK state image. Each TASK will have a unique
TASK state image.

SCHEDULING

The OSP schedules the processor time among the
various TASKs on the basis of priority. A TASK has an
execution priority relative to all other TASKs in the
system, which the OSP maintains for each TASK in its
TASK state image. When a TASK of higher priority
than the executing TASK becomes ready to execute,

3-203

the OSP switches the control of the processor to the
higher priority TASK. First, the OSP saves the outgo-
ing (fower priority) TASK's state including CPU regis-
ter values in its TASK state image. Then, it restores
the CPU registers from the TASK state image of the
incoming (higher priority) TASK. Finally, it causes the
CPU to start or resume executing the higher priority
TASK.

TASK scheduling is performed by the OSP. The OSP’s
priority-oriented preemptive scheduler determines
which TASK executes by comparing their relative
priorities. The scheduler insures that the highest
priority TASK with a status of READY will execute. A
TASK will continue to execute until an interrupt with a
higher priority occurs, or until it requests unavailable
resources, for which it is willing to wait, or until it
makes specific resources available to a higher
priority TASK waiting for those resources.

TASKs can become READY by receiving a message,
receiving control, receiving an interrupt, or by timing
out. The OSP always monitors the status of all the
TASKs (and interrupts) in the system. Preemptive
scheduling allows the system to be responsive to the
external environment while only devoting CPU re-
sources to TASKs with work to be performed.

TIMED WAIT

The OSP timer hardware facilities support timed
waits and timeouts. Thus, in many primitives, a TASK
can specify the length of time it is prepared to wait
for an event to occur, for the desired resources to
become available or for a message to be received at a
MAILBOX. The timing interval (or System Tick) can
be adjusted, with a lower limit of 1 millisecond.

APPLICATION CONTROL OF TASK EXECUTION
Programs may alter TASK execution status and
priority dynamically. One TASK may suspend its own
execution or the execution of another TASK for a
period of time, then resume its execution later. Multi-
ple suspensions are provided. A suspended TASK
may be suspended again.

The eight OSP Job and TASK management primitives
are:

CREATE JOB Partitions system resources and
creates a TASK execution

environment.

Creates a TASK 'state image.
Specifies the location of the
TASK code instruction stream,
its execution priority, and the
other TASK attributes.

CREATE TASK

210216-002

intel

80130/80130-2
iAPX 86/30, 88/30, 186/30, 188/30

PRELIMINARY

DELETE TASK Deletes the TASK state image,
removes the instruction stream
from execution and deallocates
stack resources. Does not delete

INTERRUPT TASKS.

SUSPEND TASK Suspends the specified TASK or,
if already suspended, in-
crements its suspension depth
by one. Execute state is

SUSPEND.

RESUME TASK Decrements the TASK suspen-
sion depth by one. If the sus-
pension depth is then zero,
the primitive changes the task
execution status to READY,
or ASLEEP (if ASLEEP/

SUSPENDED).

SLEEP Places the requesting TASK in
the ASLEEP state for a specified
number of System Ticks. (The
TICK interval can be configured

down to 1 millisecond.)

SET PRIORITY Alters the priority of a TASK.

Interrupt Management

The OSP supports up to 256 interrupt levels or-
ganized in an interrupt vector, and up to 57 external
interrupt sources of which one is the NMI (Non-
Maskable Interrupt). The OSP manages each inter-
rupt level independently. The OSF INTERRUPT
SUBSYSTEM provides two mechanisms for interrupt
management: INTERRUPT HANDLERs and INTER-
RUPT TASKs. INTERRUPT HANDLERs disable all
maskable interrupts and should be used only for
servicing interrupts that require little processing
time. Within an INTERRUPT HANDLER only certain
OSF Interrupt Management primitives (DISABLE,
ENTER INTERRUPT, EXIT INTERRUPT, GET LEVEL,
SIGNAL INTERRUPT) and basic CPU instructions
can be used, other OSP primitives cannot be. The
INTERRUPT TASK approach permits all OSP
primitives to be issued and masks only lower priority
interrupts.

Work flow between an INTERRUPT HANDLER and an
INTERRUPT TASK assigned to the same level is
regulated with the SIGNAL INTERRUPT and WAIT
INTERRUPT primitives. The flow is asynchronous.
When an INTERRUPT HANDLER signals an INTER-
RUPT TASK, the INTERRUPT HANDLER becomes
immediately available to process another interrupt.
The number of interrupts (specified for the level) the

3-204

INTERRUPT HANDLER can queue for the INTER-
RUPT TASK can be limited to the value specified in
the SET INTERRUPT primitive. When the INTER-
RUPT TASK is finished processing, it issues a WAIT
INTERRUPT primitive, and is immediately ready to
process the queue of interrupts that the INTERRUPT
HANDLER has built with repeated SIGNAL INTER-
RUPT primitives while the INTERRUPT TASK was
processing. If there were no interrupts at the level,
the queue is empty and the INTERRUPT TASK is
SUSPENDED. See the Example (Figure 5) and Fig-
ures 6 and 7.

OSP external INTERRUPT LEVELs are directly
related to internal TASK scheduling priorities. The
OSP maintains a single list of priorities including
both tasks and INTERRUPT LEVELs. The priority of
the executing TASK automatically determines which
interrupts are masked. Interrupts are managed by
INTERRUPT LEVEL number. The OSP supports eight
levels directly and may be extended by means of
slave 8259As to a total of 57.

The nine Interrupt Management OSP primitives are:

DISABLE Disables an external INTER-
RUPT LEVEL.

Enables an external INTER-
RUPT LEVEL.

Gives an Interrupt Handler
its own data segment, sepa-
rate from the data segment
of the interrupted task.

Performs an “END of INTER-
RUPT" operation. Used by
an INTERRUPT HANDLER
which does not invoke an IN-
TERRUPT TASK. Reenables
interrupts, when the INTER-
RUPT HANDLER gives up
control.

ENABLE

ENTER INTERRUPT

EXIT INTERRUPT

GET LEVEL Returns the interrupt level
number of the executing IN-

TERRUPT HANDLER.

Cancels the previous as- .
signment made to an
interrupt level by SET IN-
TERRUPT primitive request.
If an INTERRUPT TASK has
been assigned, it is also
deleted. The interrupt level
is disabled.

Assigns an INTERRUPT
HANDLER to an interrupt
level and, optionally, an IN-
TERRUPT TASK.

RESET INTERRUPT

SET INTERRUPT

210216-002

ntel

80130/80130-2
iAPX 86/30, 88/30, 186/30, 188/30 PRELIMINARY

/* CODE EXAMPLE A INTERRUPT TASK TO KEEP TRACK OF TIME-OF-DAY
DECLARE SECONDSCOUNT BYTE,
MINUTESCOUNT BYTE,
HOURS$COUNT BYTE;
TIMESTASK: PROCEDURE;
DECLARE TIMESEXCEPTSCODE WORD;
ACSCYCLESCOUNT=0;
CALL ROSSET$INTERRUPT(ACSINTERRUPTSLEVEL, 01H),
@ACSHANDLER,0,@ TIMESEXCEPT$CODE);
CALL RQSRESUMES‘I’ASK(lNIT‘TASKSTOKEN.@TIMESEXCEP“CODE);
DO HOURSCOUNT=0 TO 23;
DO MINUTESCOUNT=0 TO 59;
DO SECOND$COUNT=0 TO 59;
CALL RQSWAITSINTERRUPT(ACSINTERRUPTSLEVEL,
@TIMESEXCEPT$CODE);
IF SECONDSCOUNT MOD 5=0
THEN CALL PROTECTEDSCRT$OUT(BEL);
END; /* SECOND LOOP */
END; /* MINUTE LOOP */
END; [HOUR LOOP */
CALL RQSRESETSINTERRUPT(ACSINTERRUPTSLEVEL, @TIMESEXCEPT$CODE);
END TIMESTASK; .
/* CODE EXAMPLEB INTERRUPT HANDLER TO SUBDIVIDE A.C. SIGNAL BY 60. *f
DECLARE AC$SCYCLESCOUNT BYTE;
AC$HANDLER: PROCEDURE INTERRUPT 59;
DECLARE ACSEXCEPTSCODE WORD;
AC$SCYCLESCOUNT=AC$CYCLESCOUNT +1;
IF ACSCYCLESCOUNT:> =60 THEN DO;
ACSCYCLESCOUNT=0;
CALL RQ‘SIGNAL&ONTERRUPT(ACSINTERRUPTSLEVEL,@ACSEXCEPTSCODE);

END;
END ACSHANDLER;

Figure 5. OSP Examples

INTERRUPT OCCURS AND
INTERRUPT HANDLER
GETS CONTROL

NEED
A NEW
0S VALUE
?

YES

]

CALL
ENTERSINTERRUPT

NO]

INTERRUPT HANDLER
DOES SOME
INTERRUPT SERVICING

NEED
NO TO INVOKE YES
INTERRUPT

[]

TASK
INTERRUPT ?
HANDLER CALLS
EXITSINTERRUPT

INTERRUPT
HANDLER CALLS
SIGNALSINTERRUPT

I

INTERRUPT TASK
COMPLETES INTERRUPT
SERVICING

INTERRUPT TASK
LLS

CAl
WAITSINTERRUPT

CONTROL RETURNS TOAN -]
APPLICATION TASK

Figure 6. Interrupt Handling Flowchart

3-206

210216-002

80130/80130-2

L]
L Itel iAPX 86/30, 88/30, 186/30, 188/30
BUFFERS
" (@ OBTAINS
. FULL BUFFER
*
/’ T Y
/ \\
JE ! \TerRuPT)
TASK p~o
SN LS
. —
/ AN
(D) STARTS FILLING \
EMPTY BUFFER
WHEN FULL, CALLS i
SIGNALSINTERRUPT L=
TO START TASK ON Vs N
FULL BUFFER /’ \\
INTERRUPT INTERRUPT INTERRUPT CALLS INTERRUPT | (B) PROCESSES
HANDLER TASK © WAITSINTERRUPT '\ ASK g ® FULL BUFFER
TOWAIT FOR NEXT \ ’
FULL BUFFER ~__-"
~— —_ t

SIGNAL INTERRUPT

Figure 7. Multiple Buffer Example

Used by an INTERRUPT

HANDLER to activate an In-
terrupt Task.

WAIT INTERRUPT Suspends the calling Inter-
rupt Task until the INTER-
RUPT HANDLER performs a
SIGNAL INTERRUPT to in-
voke it. If a SIGNAL INTER-
RUPT for the task has

occurred, it is processed.

FREE MEMORY MANAGEMENT

The OSP Free Memory Manager manages the
memory pool which is allocated to each JOB for its
execution needs. (The CREATE JOB primitive al-
locates the new JOB's memory pool from the
memory pool of the parent JOB.) The memory pool is
part of the JOB resources but is not yet allocated
between the tasks of the JOB. When a TASK, MAIL-
BOX, or REGION system data type structure is
created within that JOB, the OSP implicitly allocates
memory for it from the JOB’s memory pool, so that a
separate call to allocate memory is not required. OSP
primitives that use free memory management im-
plicitly include CREATE JOB, CREATE TASK,
DELETE TASK, CREATE MAILBOX, DELETE MAIL-
BOX, CREATE REGION, and DELETE REGION. The

CREATE SEGMENT primitive explicitly allocates a
memory area when one is needed by the TASK. For
example, a TASK may explicitly allocate a SEGMENT
for use as a memory buffer. The SEGMENT length
can be any multiple of 16 bytes between 16 bytes and
64K bytes in length. The programmer may specify
any number of bytes from 1 byte to 64 KB, the OSP
will transparently round the value up to the appropri-
ate segment size.

The two explicit memory allocation/deallocation
primitives are:
CREATE SEGMENT Allocates a SEGMENT of spe-
cified length (in 16-byte-long
paragraphs) from the JOB
Memory Pool.

Deallocates the SEGMENT’s
memory area, and returns it
to the JOB memory pool.

DELETE SEGMENT

Intertask Communication

The OSP has built-in intertask synchronization and
communication, permitting TASKs to pass and share
information with each other. OSP MAILBOXes con-
tain controlied handshaking facilities which guaran-
tee that a complete message will always besent from
a sending TASK to a receiving TASK. Each MAILBOX
consists of two interlocked queues, one of TASKs

3-206 210216-002

intel

80130/80130-2
iAPX 86/30, 88/30, 186/30, 188/30

PRELIMINARY

and the other of Messages. Four OSP primitives for
intertask synchronization and communication are
provided:

CREATE MAILBOX Creates intertask message

exchange.

Deletes an intertask mes-
sage exchange.

Calling TASK receives a mes-
sage from the MAILBOX.

Calling TASK sends a
message to the MAILBOX.

DELETE MAILBOX
RECEIVE MESSAGE

SEND MESSAGE

The CREATE MAILBOX primitive allocates a MAIL-
BOX for use as an information exchange between
TASKs. The OSP will post information at the MAIL-
BOX in a FIFO (First-In First-Out) manner when a
SEND MESSAGE instruction is issued. Similarily, a
message is retrieved by the OSP if a TASK issues a
RECEIVE MESSAGE primitive. The TASK which
creates the MAILBOX may make it available to other
TASKs to use.

If no message is available, the TASK attempting to
receive a message may choose to wait for one or
continue executing.

The queue management method for the task queue
(FIFO or PRIORITY) determines which TASK in the
MAILBOX TASK queue will receive a message from
the MAILBOX. The method is specified in the
CREATE MAILBOX primitive.

Intertask Synchronization and Mutual
Exclusion

Mutual exclusion is essential to multiprogramming
and muitiprocessing systems. The REGION system
data type implements mutual exclusion. A REGION is
represented by a queue of TASKS waiting to use a
resource which must be accessed by only one TASK
at a time. The OSP provides primitives to use
REGIONs to manage mutually exclusive data and
resources. Both critical code sections and shared
data structures can be protected by these primitives
from simuitaneous use by more than one task.
REGIONs support both FIFO (First-In First-Out) or
Priority queueing disciplines for the TASKS seeking
to enter the REGION. The REGION SDT can also be
used to implement software locks.

Multiple REGIONS are allowed, and are automatically
exited in the reverse order of entry. While in a
REGION, a TASK cannot be suspended by itself or
any other TASK, and thereby avoids deadlock.

There are five OSP primitives for mutual exclusion:
CREATE REGION Create a REGION (lock).
SEND CONTROL Give up the REGION.

ACCEPT CONTROL Request the REGION, but do
- not wait if it is not available.

Request a REGION, wait if

not immediately available.

Delete a REGION.

RECEIVE CONTROL

DELETE REGION‘

The OSP also provides dynamic priority adjustment
for TASKs within priority REGIONSs: If a higher-
priority TASK issues a RECEIVE CONTROL primitive,
while a (lower-priority) TASK has the use of the same
REGION, the lower-priority TASK will be trans-
parently, and temporarily, elevated to the waiting
TASK's priority until it relinquishes the REGION via
SEND CONTROL. At that point, since it is no longer
using the critical resource, the TASK will have its
normal priority restored.

OSP Control Facilities

The OSP also includes system primitives that provide
both control and customization capabilities to a mul-
titasking system. These primitives are used to control
the deletion of SDTs and the recovery of free memory
in a system, to allow interrogation of operating sys-
tem status, and to provide uniform means of adding
user SDTs and type managers.

DELETION CONTROL

Deletion of each OSP system data type is explicitly
controlled by the applications programmer by set-
ting a deletion attribute for that structure, For exam-
ple, if a SEGMENT is to be kept in memory untii DMA
activity is completed, its deletion attribute shouid be
disabled. Each TASK, MAILBOX, REGION, and SEG-
MENT SDT is created with its deletion attribute en-
abled (i.e., they may be deleted). Two OSP primitives
control the deletion atttibute: ENABLE DELETION
and DISABLE DELETION.

ENVIRONMENTAL CONTROL

The OSP provides inquiry and control operations
which help the user interrogate the application envi-
ronment and implement flexible exception handling.
These features aid in run-time decision making and
in application error processing and recovery. There
are five OSP environmental control primitives.

0S EXTENSIONS

The OSP architecture is defined to allow new user-
defined System Data Types and the primitives to ma-
nipulate them to be added to OSP capabilities

3-207 210216-002

intel

80130/80130-2
iAPX 86/30, 88/30, 186/30, 188/30

PRELIMINARY

provided by the built-in System Data Types. The type
managers created for the user-defined SDTs are
called user OS extensions and are installed in the
system by the SET OS EXTENSION primitive. Once
installed, the functions of the type manager may be
invoked with user primitives conforming to the osP
interface. For well-structured extended architec-
tures, each OS extension should support a separate
user-defined system data type, and every OS exten-
sion should provide the same calling sequence and
program interface for the user as is provided for a
built-in SDT. The type manager for the extension
would be written to suit the needs of the application.
OSP interrupt vector entries (224-255) are reserved
for user OS extensions and are not used by the OSP.
After assigning an interrupt number to the extension,
the extension user may then call it with the standard
OSP call sequence (Figure 4), and the unique
software interrupt number assigned to the
extension.

ENABLE DELETION Allows a specific SEGMENT,
TASK, MAILBOX, or REGION
SDT to be deleted.

Prevents a specific SEG-
MENT, TASK, MAILBOX, or
REGION SDT from being
deleted.

DISABLE DELETION

GET TYPE Given a token for an in-
stance of a system data type,
returns the type code.

GET TASK TOKENS Returns to the caller infor-

mation about the current
task environment.

Returns information about
the calling TASK's current in-
formation handler: its ad-
dress, and when it is used.

Provides the address and
usage of an exception
handler for a TASK.

Modifies one of the interrupt
vector entries reserved for
OS extensions (224-255) to
point to a user OS extension
procedure.

For use in OS extension er-
ror processing.

GET EXCEPTION
HANDLER

SET EXCEPTION
HANDLER

SET OS EXTENSION

SIGNAL EXCEPTION

EXCEPTION HANDLING

The OSP supports exception handlers. These are
similar to CPU exception handlers such as OVER-
FLOW and ILLEGAL OPERATION. Their purpose is to

3-208

allow the OSP primitives to report parameter errors
in primitive calis, and errors in primitive usage. Ex-
ception handling procedures are flexible and can be
individually programmed by the application. In gen-
eral, an exception handler if called will perform one
or more of the following functions:

—Log the Error.

—Delete/Suspend the Task that caused the
exception.

—Ignore the error, presumably because it is not
serious.

An EXCEPTION HANDLER is written as a procedure.
It PLM/86 is used, the “compact,” “medium” or
“large’” model of computation shouid be specified for
the compilation of the program. The mode in which
the EXCEPTION HANDLER operates may be speci-
fied in the SET EXCEPTION HANDLER primitive. The
return information from a primitive call is shown in
Figure 4. CX is used to return standard system error
conditions. Table 7 shows a list of these conditions,
using the default EXCEPTION HANDLER of the OSP.

HARDWARE DESCRIPTION

The 80130 operates in a closely coupled mode with
the iAPX 86/10 or 88/10 CPU. The 80130 resides on
the CPU local muitiplexed bus (Figure 8). The main
processor is always configured for maximum mode
operation. The 80130 automatically selects between
its 88/30 and 86/30 operating modes.

The 80130 used in the 86/30 configuration, as shown
in Figure 8 (or a similar 88/30 configuration),
operates at both 5 and 8 MHz without requiring pro-
cessor wait states. Wait state memories are fully sup-
ported, however. The 80130 may be configured with
both an 8087 NPX and an 8089 10P, and provides
full context control over the 8087.

The 80130 {shown in Figure 3) is internally divided
into a contro! unit (CU) and operating system unit
(OSU). The OSU contains facilities for OSP kernel
support including the system timers for scheduling
and timing waits, and the interrupt controller for
interrupt management support.

iAPX 86/30, iAPX 88/30 System
Configuration

The 80130 is both /O and memory mapped to the
local CPU bus. The CPU’'s status S0/-S2/ is
decoded along with IOCS/ (with BHE and AD3-
ADp) or MEMCS/ (with AD43-ADy). The pins are
internally latched. See Table 1 for the decoding of
these lines.

210216-002

intel

80130/80130-2
iAPX 86/30, 88/30, 186/30, 188/30

PRELIMINARY

Memory Mapping

Address lines A1g~Aq4 can be used to form MEMCS/
since the 80130's memory-mapped portion is aligned
along a 16K-byte boundry. The 80130 can reside on
any 16K-byte boundry excluding the highest
(FCOOOH-FFFFFH) and lowest (00000H-003FFH). The
80130 control store code is position-independent ex-
cept as limited above, in order to make it compatible
with many decoding logic designs. ADq3-ADg are
decoded by the 80130’s kernel control store.

I/O Mapping

The I/O-mapped portion of the 80130 must be aligned
along a 16-byte boundry. Address lines A15-Ay
should be used to form 10CS/.

System Performance

The approximate performance of representitive OSP
primitives is given in Table 5. These times are shown
for a typical iAPX 86/30 implementation with an 8
MHz clock. These execution times are very compara-
ble to the execution times of similar functions in
minicomputers (where available) and are an order of
magnitude faster than previous generation
microprocessors.

Initialization

Both application system initialization and OSP-
specific initialization/configuration are required to
use the OSP. Configuration is based on a “database”
provided by the user to the iOSP 86 support package.
The OSP-specitic initialization and configuration in-
formation area is assigned to a user memory address
adjacent to the 80130’s memory-mapped location.
(See Application Note 130 for further details.) The
configuration data defines whether 8087 support is
configured in the system, specifies if slave 8259A
interrupt controllers are used in addition to the
80130, and sets the operating system time base (Tick
Interval). Also located in the configuration area are
the exception handler control parameters, the ad-
dress location of the (separate) application system
configuration area and the OSP extensions in use.
The OSP application system configuration area may
be located anywhere in the user memory and must
include the starting address of the application in-
struction code to be executed, plus the locations of
the RAM memory blocks to be managed by the OSP
free memory manager. Complete application system
support and the required 80130 configuration sup-
port are provided by the iAPX 86/30 and iAPX 88/30
OPERATING SYSTEM PROCESSOR SUPPORT
PACKAGE (iOSP 86).

3-209

RAM Requirements

The OSP manages its own interrupt vector, which is
assigned to low RAM memory. Working RAM storage
is required as stack space and data area. The
memory space must be allocated in user RAM.

OSP interrupt vector memory locations OH-3FFH
must be RAM based. The OSP requires 2 bytes of
allocated RAM. The processor working storage is
dynamically allocated from free memory. Approxi-
mately 300 bytes of stack should be allocated for
each OSP task.

TYPICAL SYSTEM CONFIGURATION

Figure 8 shows the processing cluster of a “typical”
iAPX 86/30 or iAPX 88/30 OSP system. Not shown are
subsystems likely to vary with the application. The
configuration includes an 8086 (or 8088) operating in
maximum mode, an 8284A clock generator and an
8288 system controller. Note that the 80130 is located
on the CPU side of any latches or transceivers. See
Intel Application Note 130 for further details on
configuration. .

OSP Timers

The OSP Timers are connected to the lower half of
the data bus and are addressed at even addresses.
The timers are read as two successive bytes, always
LSB followed by MSB. The MSB is always latched on
a read operation and remains latched until read.
Timers are not gatable.

Baud Rate Generator

The baud rate generator is 8254 compatible (square
wave mode 3). Its output, BAUD, is initially high and
remains high until the Count Register is loaded. The
first falling edge of the clock after the Count Register
is loaded causes the transfer of the internal counter
to the Count Register. The output stays high for N/2
[(N+1)/2 if N is odd] and then goes low for N/2
[(N—1)/2 if N is 6dd]. On the falling edge of the ciock
which signifies the final count for the output in low |
state, the output returns to high state and the Count
Register is transferred to the internal counter. The
whole process is then repeated. Baud Rates are
shown in Table 6.

The baud rate generator is located at 0CH (12), rela-
tive to the 16-byte boundary in the /O space in which
the 80130 component is located (“OSF” in the follow-
ing example), the timer control word is located at

210216-002

80130/80130-2
iAPX 86/30, 88/30, 186/30, 188/30

PRELIMINARY

1

CLK

B
1
)

29

CONTROL >

) 8288
8284A

PEN

8086

BHE
A9 LOCAL
.

ADDRESS/DATA Y 8282

INTR ADO

AND
ADDRESS .
.

SYSTEM
RESOURCES
A0

> 8206
DEN

INT 52
—=1CLK 30

K
AD1S /‘““
e

ADO

DECODE
1ok LOGIC
WMEMCS

ACK
LR

RO

.
BALD . .
. ¥
IR7
SYSTICK | " dinz

\ INTERRUPT REQUESTS
7

Figure 8. Typical OSP Configuration

relative address, OEH(14). Timers are addressed with
I10CS=0. Timers 0 and 1 are assigned to the use by
the OSP, and should not be altered by the user.

For most baud-rate generator applications, the com-
mand byte

0B6H Read/Write Baud-Rate Deiay Value
will be used. A typical sequence to set a baud rate
of 9600 using a count value of 52 follows (see
Table 6):

MOV AX,0B6H ;Prepare to Write Delay to

Timer 3.
OUT OSF+14,AX ;Control Word.
MOV AX, 52
OUT OSF+12,AL ;LSB written first
XCHG AL,AH

OUT OSF+12,AL ;MSB written after.

The 80130 timers are subset compatible with 8254
timers.

3-210

Interrupt Controller

The Programmable Interrupt Controller (PIC), is also
an integral unit of the 80130. lts eight input pins
handie eight vectored priority interrupts. One of
these pins must be used for the SYSTICK time func-
tion in timing waits, using an external connection as
shown. During the 80130 initialization and configura-
tion sequence, each 80130 interrupt pin is individu-
ally programmed as either level or edge sensitive.
External slave 8259A interrupt controllers can be
used to expand the total number of OSP external
interrupts to 57.

In addition to standard PIiC funtions, 80130 PIC unit
has an LIR output signal, which when low indicates
an interrupt acknowledge cycle. LIR=0 is provided to
control the 8289 Bus Arbiter SYSB/RESB pin. This
will avoid the need of requesting the system bus to
acknowledge local bus non-slave interrupts. The
user defines the interrupt system as part of the
configuration.

210216-002

ot

80130/80130-2
iAPX 86/30, 88/30, 186/30, 188/30

PRELIMINARY

INTERRUPT SEQUENCE
The OSP interrupt sequence is as follows:

1. One or more of the interrupts is set by a low-to-
high transition on edge-sensitive IR inputs or by a
high input on level-sensitive IR inputs.

2. The 80130 evaluates these requests, and sends an
INT to the CPU, if appropriate.

3. The CPU acknowledges the INT and responds
with an interrupt acknowledge cycle which is en-
coded in Sz—So.

4. Upon receiving the first interrupt acknowledge
from the CPU, the highest-priority interrupt is set
by the 80130 and the corresponding edge detect
latch is reset. The 80130 does not drive the ad-
dress/data bus during this bus cycle but does
acknowledge the cycle by making ACK=0 and
sending the LIR value for the IR input being
acknowledged.

5. The CPU will then initiate a second interrupt ac-
knowledge cycle. During this cycle, the 80130 will
supply the cascade address of the interrupting
input at Ty on the bus and also release an 8-bit
pointer onto the bus if appropriate, where it is
read by the CPU. If the 80130 does supply the
pointer, then ACK will be low for the cycle. This
cycle also has the value LIR for the IR input being
acknowledged.

6. This completes the interrupt cycle. The ISR bit
remains set until an appropriate EXIT INTERRUPT
primitive (EOI command) is called at the end of
the Interrupt Handler.

OSP APPLICATION EXAMPLE

Figure 5 shows an application of the OSP primitives
to keep track of time of day in a simplified example.
The system design uses a 60 Hz A.C. signal as a time
base. The power supply provides a TTL-compatible

signal which drives one of 80130 edge-triggered in-
terrupt request pins once each A.C. cycle. The Inter-
rupt Handler responds to the interrupts, keeping
track of one second’s A.C. cycles. The Interrupt Task
counts the seconds and after a day deletes itself. In
typical systems it might perform a data logging oper-
ation once each day. The Interrupt Handler and Inter-
rupt Task are written as separate modular programs.

The Interrupt Handler will actually service interrupt
59 when it occurs. It simply counts each interrupt,
and at a count of 60 performs a SIGNAL INTERRUPT
to notify the Interrupt Task that a second has elapsed.
The Interrupt Handler (ACS HANDLER) was assigned
to this level by the SET INTERRUPT primitive. After
doing this, the Interrupt Task performed the Primitive
RESUME TASK to resume the application task (INITS
TASKS TOKEN).

The main body of the task is the counting loop. The
Interrupt Task is signaled by the SIGNAL INTERRUPT
primitive in the Interrupt Handler (at interrupt level
ACS INTERRUPTS LEVEL). When the task is sig-
nalled by the Interrupt Handler it will execute the
loop exactly one time, increasing the time count
variables. Then it will execute the WAIT INTERRUPT
primitive, and wait until awakened by the Interrupt
Handler. Normally, the task will now wait some period
of time for the next signal. However, since the inter-
face between the Handler and the Task is asyn-
chronous, the handler may have aiready queued the
interrupt for servicing, the writer of the task does not
have to worry about this possibility.

At the end of the day, the task will exit the loop and
execute RESET INTERRUPT, which disables the in-
terrupt level, and deletes the interrupt task. The OSP
now reclaims the memory used by the Task and
schedules another task. If an exception occurs, the
coded value for the exception is available in TIMES
EXCEPTS CODE after the execution of the primitive.

A typical PL/M-86 calling sequence is illustrated by
the call to RESET INTERRUPT shown in Figure 5.

3-211 210216-002

“’ 80130/80130-2
ntel iAPX 86/30, 88/30, 186/30, 188/30 PRELIMINARY

Table 2. OSP System Data Type Summary

Job Jobs are the means of organizing the program environment and resources. An application consists of
one or more jobs. Each iAPX 86/30 system data typeis contained in some job. Jobs are independent of
each other, but they may share access to resources. Each job has one or more tasks, one of whichis an
initial task. Jobs are given pools of memory, and they may create subordinate offspring jobs, which
may borrow memory from their parents.

Task Tasks are the means by which computations are accomplished. A task is an instruction stream withits
own execution stack and private data. Each task is part of a job and is restricted to the resources
provided by its job. Tasks may perform general interrupt handling as well as other computational
tunctions. Each task has a set of attributes, which is maintained for it by the iAPX 86/30, which
characterize its status. These attributes are:

its containing job

its register context

its priority (0-255)

its execution state (asleep, suspended, ready, running, asleep/suspended).
its suspension depth

- its user-selected exception handler

its optional 8087 extended task state

Segment Segments are the units of memory allocation. A segment is a physically contiguous sequence of
16-byte, 8086 paragraph-length, units. Segments are created dynamically from the free memory
space of a Job as one of its Tasks requests memory for its use. Asegment is deleted when itis no longer
needed. The iAPX 86/30 maintains and manages free memory in an orderly fashion, it obtains memory
space from the pool assigned to the containing job of the requesting task and returns the space to the
job memory pool (or the parent job pool) when it is no longer needed. It does not allocate memory to
create a segment if sufficient free memory is not available to it, in that case it returns an error
exception code.

Mailbox Mailboxes are the means of intertask communication. Mailboxes are used by tasks to send and
receive message segments. The iAPX 86/30 creates and manages two queues for each mailbox. One
of these queues contains message segments sent to the mailbox but not yet received by any task. The
other mailbox queue consists of tasks that are waiting to receive messages. The iAPX 86/30 operation
assures that waiting tasks receive messages as soon as messages are available. Thus at any moment
one or possibly both of two mailbox queues will be empty.

Region Regions are the means of serialization and mutual exclusion. Regions are familiar as “critical code
regions.” The iAPX 86/30 region data type consists of a queue of tasks. Each task waits to execute in
mutually exclusive code or to access a shared data region, for example to update a file record.

Tokens The OSP interface makes use of a 16-bit TOKEN data type to identify individual OSF data structures.
Each of these (each instance) has its own unique TOKEN. When a primitive is called, it is passed the
TOKENSs of the data structures on which it will operate.

3-212 210216-002

80130/80130-2

ELIMINARY
nu iADPY 868/30. 88/30. 186/30, 188/30 P@
Table 3. System Data Type Codes and Attributes
S.D.T. Code Attributes
Jobs 1 Tasks
Memory Pool
S.D.T. Directory
Tasks 2 Priority
Stack
Code
State
Exception Handler
Mailboxes 3 Queue of S:D.T.s
(generally segments)
Queue of Tasks
waiting for S.D.T.s
Region 5 Queue of Tasks
waiting for mutually
exclusive code or
data
Segments 6 Buffer
Length
Table 4. OSP Primitives)
Class OosP Interrupt Entry Code Parameters
Primitive Number in AX On Caller’s Stack
J .
(o} CREATE JOB 184 0100H “See 80130 User Manual
B
CREATE TASK " 184 0200H Priority, IP Ptr, Data Segment, Stack
Seg, Stack Size Task Information,
T ExcptPtr
A DELETE TASK 184 0201H TASK, ExcptPtr
S SUSPEND TASK 184 0202H TASK, ExcptPtr
K RESUME TASK 184 0203H TASK, ExcptPtr
SET PRIORITY 184 0208H TASK, Priority, ExcptPtr
SLEEP 184 0204H Time Limit,ExcptPtr
DISABLE 190 0705H Level, ExcptPtr
| ENABLE 184 0704H Level #, ExcptPtr
N ENTER INTERRUPT 184 0703H Level #, ExcptPtr
T EXIT INTERRUPT 186 NONE Level # ExcptPtr
E GET LEVEL 188 0702H Level #, ExcptPtr
R RESET INTERRUPT- 184 0706H Level #, ExcptPtr
R SET INTERRUPT 184 0701H Level, Interrupt Task Flag Interrupt
1] Handler Ptr, Interrupt Handler DataSeg
P ExcptPtr
T SIGNAL INTERRUPT 185 NONE Level, ExcptPtr
WAIT INTERRUPT 187 NONE Level, ExcptPtr
S
E
G CREATE SEGMENT 184 0600H Size, ExcptPtr
M DELETE SEGMENT 184 0603H SEGMENT, ExceptPtr
E
N
T

3-213

210216-002

. o
80130/80130-2
intel 1APX 86/30, 88/30, 186730, 188/30 PRELIMINARY
Table 4. OSP Primitives (Continued)
Class ospP Interrupt Entry Code Parameters
Primitive Number in AX On Caller’'s Stack
M CREATE MAILBOX 184 0300H Mailbox flags, ExcptPtr
A DELETE MAILBOX 184 0301H MAILBOX, ExcptPtr
I RECEIVE MESSAGE 184 0303H MAILBOX, Time Limit ResponsePtr,
L ExcptPtr
CB) SEND MESSAGE 184 0302H MAILBOX,Message Response, ExcptPtr
X
R ACCEPT CONTROL 184 0504H REGION, ExcptPtr
E CREATE REGION 184 0500H Region Flags, ExcptPtr
G DELETE REGION 184 0501H REGION, ExcptPtr
| RECEIVE CONTROL 184 0503H REGION, ExcptPtr
0 SEND CONTROL 184 0502H ExcptPtr
N
5 DISABLE DELETION 184 0001H TOKEN,ExcptPtr
v ENABLE DELETION 184 0002H TOKEN,ExcptPtr
| GET EXCEPTION
R HANDLER 184 0800H Ptr,ExcptPtr
fo} GETTYPE 184 0000H TOKEN,ExcptPtr
N GET TASK TOKENS 184 0206H Request, ExcptPtr
M SET EXCEPTION
E HANDLER 184 0801H Ptr, ExcptPtr
N SET OS EXTENSION 184 0700H Code,InstPtr, ExcptPtr
T SIGNAL
/C EXCEPTION 184 0802H Exception Code, Parameter Number,
StackPtr,0,0,ExcptPtr
NOTES:

All parameters are pushed onto the OSP stack. Each parameter is one word. See Figure 3 for Call Sequence.

Explanation of the Symbols

JOB

TASK
REGION
MAILBOX
SEGMENT
TOKEN

Levet
ExcptPtr
Message
Ptr

Seg"

OSP JOB SDT Token

OSP TASK SDT Token

OSP REGION SDT Token
OSP MAILBOX SDT Token
OSP SEGMENT SDT Token
Any SDT Token

Interrupt Level Number

Pointer to Exception Code

Message Token

Pointer to Code,Stack etc. Address

Value Loaded into appropriate Segment Register
Vatue Parameter.

3-214 210216-002

i I 80130/80130-2
Intel iAPX 86/30, 88/30, 186/30, 188/30 PRELIMINARY
Table 5. OSP Primitive Performance Examples
S
Primitive Execution Speed*
Datatype Class (microseconds)
JOB CREATE JOB 2950
TASK CREATE TASK (no preemption) 1360
SEGMENT CREATE SEGMENT 700
MAILBOX SEND MESSAGE (with task switch) 475
SEND MESSAGE (no task switch). 265
RECEIVE MESSAGE (task waiting) 540
RECEIVE MESSAGE (message waiting) 260
REGION SEND CONTROL 170
RECEIVE CONTROL 205
‘8 MHz iAPX 86/30 OSP Configuation.
Table 6. Baud Rate Count Values (16X)
Baud 8 MHz Count 5 MHz Count
Rate Value Value
300 1667 1042
600 833 521
1200 417 260
2400 208 130
4800 104 65
9600 52 33
3-215 210216-002

ntel

80130/80130-2

iAPX 86/30, 88/30, 186/30, 188/30 PRELIMINARY

Table 7a. Mnemonic Codes for Unavoidable Exceptions

E$OK Exception Code Value = 0
the operation was successful
E$TIME Exception Code Value = 1
the specified time iimit expired before completion of the operations was possible
ESMEM Exception Code Value = 2
insufficient nucleus memory is available to satisfy the request
E$BUSY Exception Code Value = 3
specified region is currently busy
ESLIMIT Exception Code Value = 4
attempted violation of a job, semaphore, or system limit
ESCONTEXT Exception Code Value = 5
the primitive was called in an illegal context (e.g., call to enable for an already enabled
interrupt)
E$EXIST Exception Code Value = 6
atoken argument does not currently refer to any object; note that the object could have
been deleted at any time by its owner
E$STATE Exception Code Value = 7
-attempted illegal state transition by a task
ESNOTSCONFIGURED Exception Code Value = 8

the primitive called is not configured in this system

ESINTERRUPT$SATURATION

Exception Code Value = 9

The interrupt task on the requested level has reached its user specified saturation point
for interrupt service requests. No further interrupts will be allowed on the level until the
interrupt task executes a WAITSINTERRUPT. (This error is only returned, in line, to
interrupt handiers.)

ESINTERRUPT$OVERFLOW

Exception Code Value = 10

The interrupt task on the requested level previously reached its saturation point and
caused an E$SINTERRUPT$SATURATION condition. It subsequently executed an
ENABLE allowing further interrupts to come in and has received another SIG-
NALSINTERRUPTcall, bringing it over its specified saturation point for interrupt service
requests. (This error is only returned, in line, to interrupt handiers).

Table 7b. Mnemonic Codes for Avoidable Exceptions

E$ZEROS$DIVIDE

Exception Code Value = 8000H
divide by zero interrupt occurred

E$OVERFLOW Exception Code Value = 8001H

overflow interrupt occurred
ESTYPE Exception Code Value = 8002H

a token argument referred to an object tha was not of required type
E$BOUNDS Exception Code Value = 8003H

an offset argument is out of segment bounds
E$SPARAM Exception Code Value = 8004H

a (non-token,non-offset) argument has an illegal value
E$BADSCALL Exception Code Value = 8005H

an entry code for which there is no corresponding primitive was passed

E$ARRAY$BOUNDS = 8006H

Hardware or Language has detected an array overflow

ESNDP$SERROR

Exception Code Value = 8007H
an 8087 (Numeric data Processor) error has been detected; (the 8087 status information
is contained in a parameter to the exception handler)

3-216 210216-002

ntel

80130/80130-2
iAPX 86/30, 88/30, 186/30, 188/30

PRELIMINARY

ABSOLUTE MAXIMUM RATINGS*

0°C to 70°C
~65°C to 150°C

Ambient Temperature Under Bins
Storage Temperature
Voitage on Any Pin With

*NOTICE: Stresses above those listed under Absolute
Maximum Ratings may cause permanent damage to the
device. This is a stress rating only and functional operation
of the device at these or any other conditions above those
indicated in the operational sections of this specification

Respectto Ground ~1.0Vto +7V is notimplied. Exposure to absolute maximum rating con-
Power Dissipation 1.0 Watts ditions for extended period may affect device reliability.
D.C. CHARACTERISTICS (T, =0°C to 70°C, Vo. = 4.5 to 5.5V)

Symbol Parameter Min, Max. Units Test Conditions
Vi Input Low Voltage, -05 08 Vv
Vin Input High Voltage 20 Vee +.5 v
Vou Output Low Voltage 0.45 v loL =2mA |
Vou Output High Voltage 24 \ low = —400pA
lec Power Supply Current 200 mA Ta=25C
Iy Input Leakage Current 10 uA 0 < Viy < Vee
hg IR Input Load Current 10 wA Vin = Vee
-300 uA Vin=0
lo Output Leakage Current 10 uhA 45 = V) = V¢
Veu Clock Input Low 0.6 v
Venr Clock Input High 39 v
Cin Input Capacitance 10 pF
Cpo 1/0 Capacitance 15 pF
lew Clock Input Leakage Current 10 uA Vin = Vee
150 LA Vi = 25V
10 A Vi = OV
A.C. CHARACTERISTICS (T, - 0-70°C, Vec = 45-5.5 Volt, Vgs = Ground)
80130 80130-2
Symbol Parameter Min. Max. Min. Max. Units Test Conditions
Tl CLK Cycle Period 200 - 125 - ns
TeroH CLK Low Time 90 — 55 - ns
ToncL CLK High Time 69 2000 44 2000 ns
TsvcH Status Active Setup Time 80 - 65 - ns
Tersy Status Inactive Hold Time 10 - 10 - ns
TshoL Status Inactive Setup Time 55 - 55 - ns
TewsH Status Active Hold Time 10 - 10 - ns
TascH Address Valid Setup Time 8 - 8 - ns
TeLan Address Hold Time 10 - 10 - ns
TeseL Chip Select Setup Time 20 - 20 - ns
Tencs Chip Select Hold Time 0 ~ 0 - ns
Topsat Write Data Setup Time 80 - 60 - ns
Tevon Write Data Hold Time 10 - 10 - ns
L IR Low Time 100 - 100 - ns
Teov Read Data Valid Delay - 140 - 105 ns C, = 200 pE
Tcion Read Data Hold Time 10 - 10 - ns
Teiox Read Data to Floating 10 100 10 100 ns
Teica Cascade Address Delay Time - 85 - 65 ns

3-

217

210216-002

intel

80130/80130-2
iAPX 86/30, 88/30, 186/30, 188/30

PRELIMINARY

A.C. CHARACTERISTICS (Continued)

CLK

SYSTICK.
DELAY. BAUD

IR

INT

TiRCL

-
—

J
J
!

o TUHIH

80130 80130-2
Symbol * Parameter Min. Max. Min. Max. Units Notes
Teior Cascade Addresse Hold Time 10 - 10 - ns
Tiave INTA Status t Acknowledge - 80 - 80 ns
TcHEn Acknowledge Hold Time 0 - 0 - ns
Tesak Chip Select to ACK - 110 - 110 ns
Tsack Status to ACK - 140 - 140 ns
Taack Address to ACK - 90 - 90 ns
Teon Timer Qutput Delay Time - 200 -~ 200 "ns C_ =100 pF
TeLoot Timer1 Output Delay Time - 200 -~ 200 ns C_ = 100 pF
Tohm INT Output Delay - 200 - 200 ns
TireL IR Input Set Up 20 20 ns
WAVEFORMS
AC.

3-218

210216-002

i 80130/80130-2 ~
! IAPX 86730, 88/30, 186/30, 188/30 PRELIMINARY

A

WAVEFORMS
AC.

T4 T T2 T3 J T4

| S
TCHCL Teien f \ f i -
CLK / W\

TCHSY TSVCH TeLe TCLSH TSHCL
‘_j e e ‘__ .
52.81,50 ——— i
. i i / / «
TASCH TCLAH J
[~ 1
i
1 |
(BHE.A..-A. VALID X— R ;
BHE, AD,5-AD, 1
TCSCL

cscL - ’ TCHCS

s‘ =

MEMCS, i6CS \ /

TDSCL TCHOH

WRITE CYCLE Joser I

ADDRESS VALID m WRITE DATAVALID
AD)5-AD,
ACK B \
TAACK

READ CYCLE roLov TCLDX TCHEH
TCLDH
_‘ | -
_\ FLOAT / FLOAT
AD5-AD, ‘ ADDRESS VALID } 1 READ DATAVALID

L

ACK
TSACK

2ND INTA CYCLE TCLCF
i |
TCLCA
FLOAT FLOAT
AD,5-ADg (D) cASCADE ADDRESS HPOINTER @ }——-—-
TIAVE

O] —]<—Tcnen
—»] Je— Tenen

g

I
1
®

TIAVE

NOTES:

3. CASCADE ADDRESS PRESENTED ON ADS, AD® AND AD10 CORRESPONDING TO CAS0, CAST .
AND CAS2 RESPECTIVELY. AD11-AD15 LINES ARE ACTIVE AND HAVE UNKNOWN VALUES. ADO-AD7 -
ARE TRISTATE

2. POINTER VALUE IS ACTIVE ONLY IF POINTER (S GENERATED FROM THE 80150 AND NOT FROM
EXTERNAL SLAVE UNIT.

3. ACTIVE LOW ONLY WHEN POINTER DATA IS BEING SUPPLIED BY THE 80150,

4. LOW ONLY FOR LOCAL INTERRUPT.

3-219 210216-002

