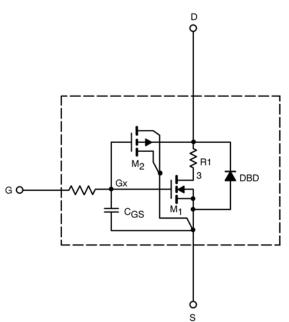


SPICE Device Model Si5486DU Vishay Siliconix

N-Channel 20-V (D-S) MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the –55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

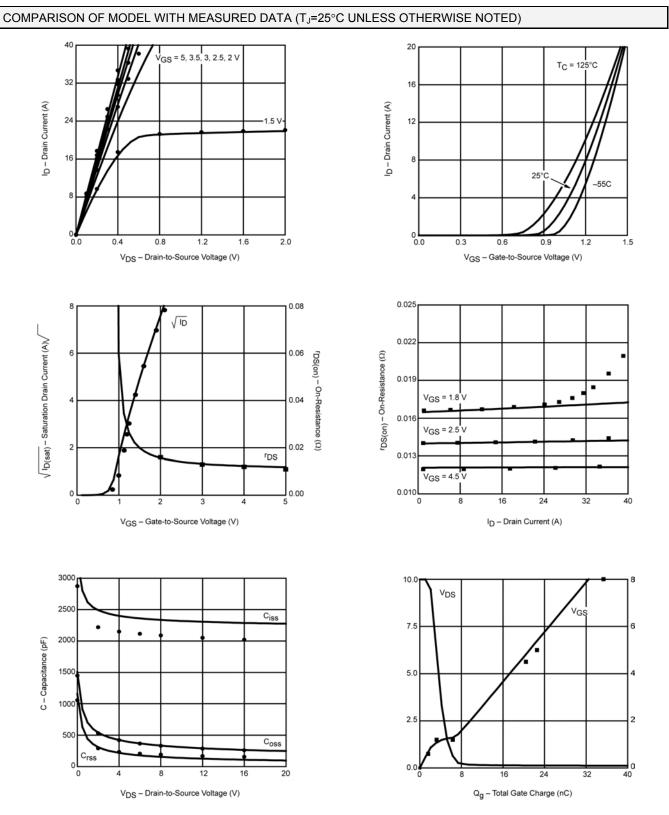
The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0-V to 4.5-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

SUBCIRCUIT MODEL SCHEMATIC

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Condition	Simulated Data	Measured Data	Unit
Static			-		
Gate Threshold Voltage	V _{GS(th)}	V_{DS} = V_{GS} , I_D = 250 μ A	0.50		V
On-State Drain Current ^a	I _{D(on)}	$V_{\text{DS}} \leq 5$ V, V_{GS} = 4.5 V	305		А
Drain-Source On-State Resistance ^a	R _{DS(on)}	V_{GS} = 4.5 V, I _D = 7.7 A	0.012	0.012	Ω
		V_{GS} = 2.5 V, I _D = 7.3 A	0.014	0.014	
		V_{GS} = 1.8 V, I _D = 4.8 A	0.017	0.017	
Forward Transconductance ^a	9 _{fs}	V_{DS} = 10 V, I _D = 7.7 A	30	46	S
Diode Forward Voltage ^a	V _{SD}	I _S = 9.1 A	0.72	0.85	V
Dynamic ^b					
Input Capacitance	C _{iss}	V_{DS} = 10 V, V_{GS} = 0 V, f = 1 MHz	2320	2100	pF
Output Capacitance	C _{oss}		311	310	
Reverse Transfer Capacitance	C _{rss}		139	180	
Total Gate Charge	Qg	V_{DS} = 10 V, V_{GS} = 8 V, I_D = 9.3 A	33	36	nC
		V_{DS} = 10 V, V_{GS} = 4.5 V, I_D = 9.3 A	19	21	
Gate-Source Charge	Q _{gs}		3.3	3.3	
Gate-Drain Charge	Q _{qd}		3.1	3.1	


Notes

a. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2\%.$ b. Guaranteed by design, not subject to production testing.

SPICE Device Model Si5486DU

Vishay Siliconix

Note: Dots and squares represent measured data.