The RF Line **Triple Video Driver Hybrid Amplifier**

The driver is designed specifically for use as the video channel final stage in high resolution color monitors.

- 80 V Supply Operation Provide Large DC Offset Range for Color Applications
- Typical 10-90% Transitions Times are 2.7 ns
- 120 MHz Minimum Bandwidth at 40 Vp-p Output
- Up to 70 Vp-p Output Swing with 80 V Supply Voltage
- Low Power Consumption
- · Excellent Grey~Scale Linearity
- · Unconditional Stability
- · Gold Metallization System for the Ultimate in Reliability

MHW3528

2.7 ns 120 MHz TRIPLE VIDEO DRIVER **HYBRID AMPLIFIER**

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Supply Voltage	Vcc	90	Vdc	
Operating Case Temperature Range	T _C	-20 to +100	·c	
Storage Temperature Range	T _{stg}	-40 to +100	°C	

 $\textbf{ELECTRICAL CHARACTERISTICS} \ (T_{C} = 25^{\circ}\text{C}, \ V_{CC} = 80 \ \text{V}, \ C_{LOAD} = 10 \ \text{pF}, \ 40 \ \text{V} \ \text{peak-to-peak output swing with 40 Vdc offset;}$ $R_1 = 287$ ohms, $C_1 = 60$ pF Typ)

Characteristic	Symbol	Min	Тур	Max	Unit
Supply Current (With Input Open Circuited) Per Channel	'cc	41	45	49	mA
Input DC Voltage (With Input Open Circuited)	VinDC	1.3	1.55	1.8	V
Output DC Voltage (With Input Open Circuited)	V _{outDC}	36	40	44	
Voltage Gain (1) (2)	Av		12.7	_	V/V
Transient Response (2) — Rise Time (10% to 90%) — Overshoot — Fall Time (90% to 10%) — Overshoot	t _r V _{OS,r} t _f V _{OS,f}		2.7 8.0 2.7 6.0	3.1 10 3.1 10	ns % ns %
Operating Supply Current per Channel (V _{out} = 40 V Peak-to-Peak, 50 MHz Square Wave with 30 V offset) (3)	lcc	-	100	-	mA
Linearity Error (V _{out} = +5.0 V to +55 V)		 		5.0	%

- 1. $A_V = V_{out}/V_S$
- 2. Input Signal is normally a 62.5 KHz square wave of 3.2 V peak-to-peak with 1.5 Vdc offset. Input t_r , $t_f < 1.0$ ns.
- 3. Output is not short circuit protected.

TYPICAL CHARACTERISTICS

Figure 2. Is versus Vout

Figure 3. Frequency Response

Figure 4. Hybrid Amplifier Test Circuit