

3.3V CMOS 18-BIT READ/WRITE BUFFER WITH 5 VOLT TOLERANT I/O AND BUS-HOLD

IDT74LVCH16701A

FEATURES:

- Typical tsk(o) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- Vcc = 3.3V ± 0.3V, Normal Range
- Vcc = 2.7V to 3.6V, Extended Range
- CMOS power levels (0.4µ W typ. static)
- All inputs, outputs, and I/O are 5V tolerant
- · Supports hot insertion
- Available in SSOP, TSSOP, and TVSOP packages

DRIVE FEATURES:

- High Output Drivers: ±24mA
- · Reduced system switching noise

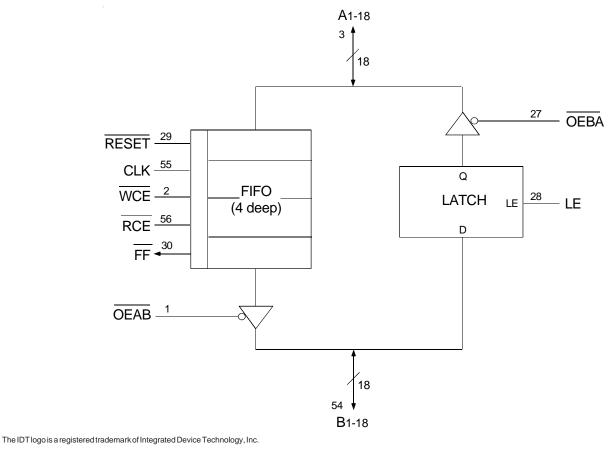
APPLICATIONS:

- 5V and 3.3V mixed voltage systems
- Data communication and telecommunication systems

FUNCTIONAL BLOCK DIAGRAM

buffer with a four deep FIFO and a read-back latch. It can be used as a read/ write buffer between a CPU and a memory or to interface a high-speed bus

DESCRIPTION:

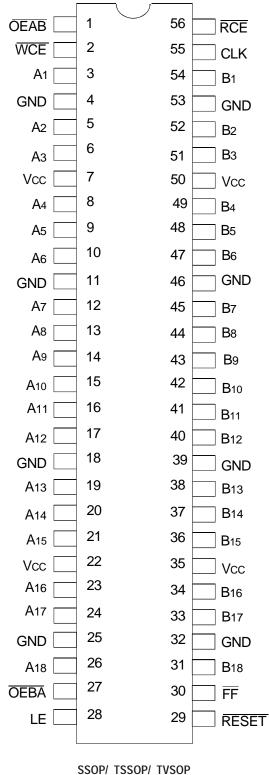

and a slow peripheral. The A-to-B (write) path has a four deep FIFO for pipelined operations. The FIFO can be reset and a FIFO full condition is indicated by the full flag (\overline{FF}). The B-to-A (read) path has a latch. All pins can be driven from either 3.3V or 5V devices. This feature allows

The LVCH16701A 18-bit read/write buffer is built using advanced dual metal CMOS technology. The device is designed as an 18-bit read/write

the use of this device as a translator in a mixed 3.3V/5V supply system. The LVCH16701A has been designed with a ±24mA output driver. This

driver is capable of driving a moderate to heavy load while maintaining speed performance.

The LVCH16701A has "bus-hold" which retains the inputs' last state whenever the input goes to a high impedance. This prevents floating inputs and eliminates the need for pull-up/down resistors.


INDUSTRIAL TEMPERATURE RANGE

OCTOBER 1999

IDT74LVCH16701A 3.3V CMOS 18-BIT READ/WRITE BUFFER WITH 5V TOLERANT I/O

INDUSTRIALTEMPERATURERANGE

PINCONFIGURATION

SOP/ TSSOP/ TVSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Description	Max	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +6.5	V
Tstg	Storage Temperature	–65 to +150	°C
Ιουτ	DC Output Current	-50 to +50	mA
Іік Іок	Continuous Clamp Current, VI < 0 or Vo < 0	-50	mA
lcc Iss	Continuous Current through each Vcc or GND	±100	mA

NOTE:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	4.5	6	рF
Соит	Output Capacitance	Vout = 0V	6.5	8	pF
Ci/o	I/O Port Capacitance	VIN = 0V	6.5	8	pF

NOTE:

1. As applicable to the device type.

PIN DESCRIPTION

Pin Names	I/O	Description
A1-18	I/O	18 bit I/O port ⁽¹⁾
B1-18	I/O	18 bit I/O port ⁽¹⁾
CLK	-	Clock for write path FIFO. Clocks data into FIFO when WCE is low, clocks data out of FIFO when RCE is low. When FIFO is full all further writes to the FIFO are inhibited. When FIFO is empty all reads from the FIFO are inhibited. CLK also resets the FIFO when RESET is low.
WCE	Ι	Enable pin for FIFO input clock (Active LOW)
RCE	Ι	Enable pin for FIFO output clock (Active LOW)
FF	0	Write path FIFO full flag. Goes low when FIFO is full.
RESET	Ι	Synchronous FIFO reset - when low CLK resets the FIFO. The FIFO pointers are initialized to the "empty" condition and FIFO output is forced high (all ones). The FIFO full flag (FF) will be high immediately after reset. (Active LOW)
ŌĒĀB	Ι	Output Enable pin for B port (Active LOW)
ŌĒBĀ	Ι	Output Enable pin for A port (Active LOW)
LE	Ι	Read path latch enable pin. When high, data flows transparently from B port to A port, B data is latched on the falling edge of LE. (Note: LE is independent of CLK and data)

NOTE:

1. These pins have "Bus-Hold". All other pins are standard inputs, outputs, or I/Os.

FUNCTION TABLE⁽¹⁾

		Inputs			Outp	outs	
OEBA	OEAB	LE	RESET	CLK	Ах	Вх	Notes
Н	Н	Н	Н	\uparrow	Q ⁽²⁾ (B) Bus Hold	Q ⁽²⁾ (A) -4CLKS Bus Hold	
L	Н	Н	Н	\uparrow	B to A		TransparentMode
L	Н	L	Н	\uparrow	Qo(B)		
Н	Н	Х	Н	\uparrow	Q ⁽²⁾ (A) Bus Hold	Q ⁽²⁾ (B) Bus Hold	
Н	L	Х	Н	\uparrow		A to B - 4 CLKS	
L	L	L	Н	↑	Q ⁽²⁾ (B) Bus Hold	Q ⁽²⁾ (B) - 4 CLKS Bus Hold	Casenotrecommended

NOTES:

1. H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

 \uparrow = LOW-to-HIGH Transition

2. Level of Q before the indicated steady-state input conditions were established.

FUNCTIONAL DESCRIPTION

This device is useful as a read/write buffer for modular high end designs. It provides multi-level buffering in the write path and single deep buffering in the read path, and is suited to write back cache implementation. The read path provides a transparent latch.

The four deep FIFO uses one clock with two clock enable pins, \overline{WCE} and \overline{RCE} to clock data in and out. The FIFO has an external full flag which goes LOW when the FIFO is full. Internal read and write pointers keep track of the words stored in the FIFO. A write attempt to a full FIFO is ignored. An attempt to read from an empty FIFO will have no effect and the last read data

remains at the output of the FIFO. The FIFO may be reset by the synchronous **RESET** input. This resets the read and write pointers to the original "empty" condition and also sets all B outputs = 1. Simultaneous read and write attempts (clock data into FIFO as well as clock data out of FIFO) are possible except on FIFO empty and full boundaries. When the FIFO is empty, and a simultaneous read and write is attempted, the read is ignored while the write is executed. If the same is attempted when the FIFO is full, the write is ignored while the read is executed. Normal operation of the four deep FIFO in the write path is independent of the read path operation.

IDT74LVCH16701A 3.3V CMOS 18-BIT READ/WRITE BUFFER WITH 5V TOLERANT I/O

TIMING DIAGRAM

WRITE CYCLES READ CYCLES Cycle 2 Cycle 3 Cycle 4 Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 1 CLK RESET WCE OEAB A [1:18] WORD 1 WORD 2 WORD 3 WORD 4 FF B [1:18] WORD 3 WORD 1 WORD 2 WORD 4 RCE

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: Operating Condition: $TA = -40^{\circ}C$ to $+85^{\circ}C$

Symbol	Parameter	Test Cond	litions	Min.	Тур. ⁽¹⁾	Max.	Unit
Vih	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	—	V
		Vcc = 2.7V to 3.6V		2	_	_	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	_	0.7	V
		Vcc = 2.7V to 3.6V			-	0.8	
Ін	Input Leakage Current	VCC = 3.6V	VI = 0 to 5.5V	_	-	±5	μA
lil							
Іогн	High Impedance Output Current	Vcc = 3.6V	Vo = 0 to 5.5V	-	-	±10	μA
Iozl	(3-State Output pins)						
IOFF	Input/Output Power Off Leakage	Vcc = 0V, VIN or Vo ≤ 5.5 V		-	-	±50	μA
Vik	Clamp Diode Voltage	Vcc = 2.3V, IIN = -18mA		_	-0.7	-1.2	V
Vн	Input Hysteresis	Vcc = 3.3V		_	100	—	mV
ICCL ICCH	Quiescent Power Supply Current	Vcc = 3.6V	VIN = GND or VCC	-	-	10	μA
lccz			$3.6 \le VIN \le 5.5V^{(2)}$	—	_	10	
ΔICC	Quiescent Power Supply Current Variation	One input at Vcc - 0.6V, other inputs at Vcc or GND		-	-	500	μA

NOTES:

1. Typical values are at Vcc = 3.3V, +25°C ambient.

2. This applies in the disabled state only.

BUS-HOLD CHARACTERISTICS

Symbol	Parameter ⁽¹⁾	Test Conditions		Min.	Тур. ⁽²⁾	Max.	Unit
Івнн	Bus-Hold Input Sustain Current	Vcc = 3V	VI = 2V	- 75	_	_	μA
IBHL			VI = 0.8V	75	—	—	
Івнн	Bus-Hold Input Sustain Current	Vcc = 2.3V	VI = 1.7V	_	—	_	μA
IBHL			VI = 0.7V	—	_	—	
Івнно	Bus-Hold Input Overdrive Current	Vcc = 3.6V	VI = 0 to 3.6V	—	_	±500	μA
Ibhlo							

NOTES:

1. Pins with Bus-Hold are identified in the pin description.

2. Typical values are at Vcc = 3.3V, +25°C ambient.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Cor	uditions ⁽¹⁾	Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	Iон = - 0.1mA	Vcc-0.2	_	V
		Vcc = 2.3V	Iон = – 6mA	2	_	
		Vcc = 2.3V	Іон = – 12mA	1.7	_	
		Vcc = 2.7V		2.2	_	
		Vcc = 3V	1	2.4	_	
		Vcc = 3V	Iон = - 24mA	2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IoL = 0.1mA	—	0.2	V
		Vcc = 2.3V	IOL = 6mA	—	0.4	
			IOL = 12mA	_	0.7	
		Vcc = 2.7V	Iol = 12mA	_	0.4	
		VCC = 3V	Iol = 24mA	_	0.55	

NOTE:

1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = − 40°C to + 85°C.

OPERATING CHARACTERISTICS, Vcc = 3.3V ± 0.3V, TA = 25°C

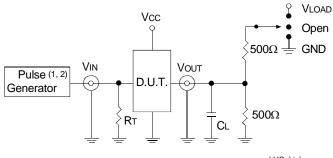
Symbol	Parameter	Test Conditions	Typical	Unit
Cpd	Power Dissipation \overline{WCE} Mode, $\overline{OEAB} = 0$	CL = 0pF, f = 10Mhz		pF
Cpd	Power Dissipation \overline{RCE} Mode, $\overline{OEBA} = 0$			1
Cpd	Registered Channel (B to A)			1
	Power Dissipation $\overline{OEBA} = 0$; $\overline{CE} = 0$			
Cpd	Registered Channel			1
	Power Dissipation $\overline{OEBA} = 0$; $\overline{CE} = 1$			

SWITCHING CHARACTERISTICS⁽¹⁾

	Parameter	Test Conditions	Vcc = 2.7V		Vcc = 3.3		
Symbol			Min.	Max.	Min.	Max.	Unit
PROPAGATIO	N DELAYS	• • • •		•	<u>.</u>		•
1	B1-18 to A1-18	Read path/latch			2	4.5	ns
2	LE (LOW to HIGH) to A1-18	Read path/latch			2	4.8	ns
3	CLK to FF	Writepath			1.5	6	ns
4	CLK to B1-18	Writepath			1.5	6	ns
5	Output Skew ⁽²⁾	Writepath			_	1	ns
SETUP & HOL	D TIMES						
6	A1-18 to CLK (LOW to HIGH) Setup	Writepath			1.5	_	ns
7	A1-18 to CLK (LOW to HIGH) Hold	Writepath			0.9	_	ns
8	B1-18 to LE (HIGH to LOW) Setup	Read path/latch			1.2	_	ns
9	B1-18 to LE (HIGH to LOW) Hold	Read path/latch			1	_	ns
10	WCE, RCE (LOW) to CLK Setup	Writepath			3.5	_	ns
11	WCE, RCE (LOW) to CLK Hold	Writepath			0	_	ns
12	RESET (LOW) to CLK Setup	Writepath			1.8	_	ns
13	RESET (LOW) to CLK Hold	Writepath			0.6	_	ns
ENABLE & DIS	SABLE TIMES						
14	OEBA LOW to A1-18 Enable	Writepath			1.5	6	ns
15	OEBA HIGH to A1-18 Disable	Writepath			1.5	5.7	ns
16	OEBA LOW to B1-18 Enable	Readpath			1.5	6	ns
17	OEBA HIGH to B1-18 Disable	Readpath			1.5	5.7	ns
MINIMUM PUL	SE WIDTHS			-			
18	CLK HIGH or LOW Pulse Width	Writepath			5	_	ns
19	LE HIGH Pulse Width	Read path/latch			5		ns
				•			
19	Clock Frequency					83	MHz
20	Clock Cycle Time				12		ns

NOTES:

1. See TEST CIRCUITS AND WAVEFORMS. TA = -40° C to $+85^{\circ}$ C.


2. Skew between any two outputs of the same package and switching in the same direction.

IDT74LVCH16701A 3.3V CMOS 18-BIT READ/WRITE BUFFER WITH 5V TOLERANT I/O

INDUSTRIAL TEMPERATURE RANGE

TEST CIRCUITS AND WAVEFORMS TEST CONDITIONS

Symbol	$Vcc^{(1)} = 3.3V \pm 0.3V$	Vcc ⁽¹⁾ =2.7V	Vcc ⁽²⁾ =2.5V±0.2V	Unit
Vload	6	6	2 x Vcc	V
Vih	2.7	2.7	Vcc	V
Vτ	1.5	1.5	Vcc / 2	V
Vlz	300	300	150	mV
Vhz	300	300	150	mV
CL	50	50	30	pF

Test Circuit for All Outputs

DEFINITIONS:

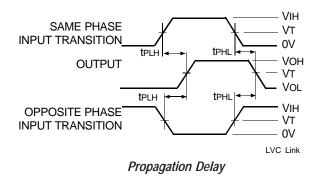
CL = Load capacitance: includes jig and probe capacitance.

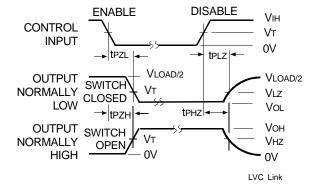
RT = Termination resistance: should be equal to Zout of the Pulse Generator. **NOTES:**

- 1. Pulse Generator for All Pulses: Rate \leq 10MHz; tr \leq 2.5ns; tr \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2ns.

SWITCH POSITION

	v
Test	Switch
Open Drain Disable Low Enable Low	Vload
Disable High Enable High	GND
All Other Tests	Open

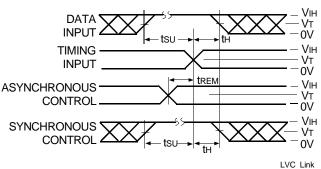

tSK(x) = |tPLH2 - tPLH1| or |tPHL2 - tPHL1|

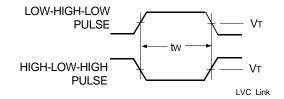

LVC Link

Output Skew - tsk(x)

NOTES:

- 1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.
- 2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.




Enable and Disable Times

NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

Set-up, Hold, and Release Times

Pulse Width

ORDERING INFORMATION

CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054 *for SALES:* 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com

for Tech Support: logichelp@idt.com (408) 654-6459