
PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

PM7350

S/UNI-
DUPLEX

TM

S/UNI-DUPLEX

DUAL SERIAL LINK, PHY MULTIPLEXER

DRIVER MANUAL

PRELIMINARY

ISSUE 1: JULY 1999

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 3

REVISION HISTORY

Issue No. Issue Date Originator Details of Change

Issue 1 July 1999 James
Lamothe

Document created from
S/UNI-DUPLEX Driver Design Spec
(PMC-981033 Issue 2) and the
S/UNI-VORTEX Driver Manual
(PMC-990786 Issue 1)

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 4

ABOUT THIS MANUAL

This manual describes the S/UNI-DUPLEX device driver. It describes the driver’s
functions, data structures, and architecture. This manual focuses on the driver’s
interfaces to your application, real-time operating system, and to the S/UNI-DUPLEX
device. It also describes in general terms how to modify and port the driver to your
software and hardware platform.

Audience

This manual was written for people who need to:

• Evaluate and test the S/UNI-DUPLEX device

• Modify and add to the S/UNI-DUPLEX driver’s functions

• Port the S/UNI-DUPLEX driver to a particular platform.

References

For more information about the S/UNI-DUPLEX driver, see the driver's release notes.
For more information about the S/UNI-DUPLEX device, see the following documents:

• S/UNI-DUPLEX (Dual Serial Link, Phy Multiplexer) Datasheet: PMC-980581

• S/UNI-DUPLEX (Dual Serial Link, Phy Multiplexer) Short Form Datasheet:
PMC-990174)

• S/UNI-DUPLEX and S/UNI-VORTEX Technical Overview: PMC-981025

Note: Ensure that you use the document that PMC_Sierra issued for your version of
the device and driver.

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 5

TABLE OF CONTENTS

1 Driver Porting Quick Start..13

2 Driver Functions and Features ..15

2.1 Driver Architecture...16
2.1.1 Driver API Module ..17
2.1.2 Driver Real-Time-OS Interface Module ..18
2.1.3 Driver Hardware-Interface Module ...18
2.1.4 Driver Library Module ...18
2.1.5 Device Data-Block Module ...18
2.1.6 Interrupt-Service Routine Module ..19
2.1.7 Deferred-Processing Routine Module ..19

2.2 Driver Software States...19

2.3 Processing Flows...20
2.3.1 Device Initialization, Re-initialization, and Shutdown ...21
2.3.2 Cell Extraction ..22
2.3.3 Interrupt Servicing ..23
2.3.4 Polling Servicing ...26

3 Driver Data Structures...29

3.1 Cell Data Structures ..29
3.1.1 Cell-Header Data Structure..29
3.1.2 Cell-Control Data Structure ..29

3.2 Device-Configuration Data Structures ...30
3.2.1 Initialization Data Structure ..30
3.2.2 Register Data Structure..31

3.3 Device-Context Data Structures ..33
3.3.1 Global Driver-Database Structure ..33
3.3.2 Device Data-Block Structure ..34

3.4 Interrupt Data Structures ...36
3.4.1 Interrupt-Enable Data Structure ...36
3.4.2 Interrupt-Context Data Structure ..37

3.5 Count Structures..38
3.5.1 HSS Counts..38
3.5.2 Statistical Counts..38

4 Application Interface Functions ...43

4.1 Driver Initialization and Shutdown ...44
4.1.1 duplexModuleInit: Initializing Driver Modules ...44
4.1.2 duplexModuleShutdown: Shutting Down Driver Modules...45

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 6

4.2 Device Addition, Reset, and Deletion ..45
4.2.1 duplexAdd: Adding Devices..45
4.2.2 duplexReset: Resetting Devices...46
4.2.3 duplexRemoteReset: Resetting Other Devices ..47
4.2.4 duplexDelete: Deleting Devices..47

4.3 Reading from and Writing to Devices ..48
4.3.1 duplexRead: Reading from Device Registers...48
4.3.2 duplexWrite: Writing to Device Registers ...49

4.4 Device Initialization ..49
4.4.1 duplexInit: Initializing Devices...49
4.4.2 duplexInstallIndFn: Installing Indication Callback Functions ..50
4.4.3 duplexRemoveIndFn: Removing Indication Callback Functions51

4.5 Device Activation and Deactivation ...52
4.5.1 duplexActivate: Activating Devices ...52
4.5.2 duplexDeactivate: Deactivating Devices...52

4.6 Device Diagnostics ..53
4.6.1 duplexRegisterTest: Verifying Device Register Access...53
4.6.2 duplexLoopback: Enabling/Disabling Diagnostic or Line Loopback54
4.6.3 duplexGetClockStatus: Monitoring Device Clocks ...55

4.7 HSS Link Configuration ...56
4.7.1 duplexHssActiveLnkGetCfg: Getting HSS-Link Selection Method Information............56
4.7.2 duplexHssActiveLnkSetCfg: Setting Active HSS Links ..57
4.7.3 duplexHssGetConfig: Getting HSS-Link Configuration Information57
4.7.4 duplexHssSetConfig: Modifying HSS-Link Configuration Information..........................58
4.7.4 58

4.8 HSS-Link Cell Insertion and Extraction ...59
4.8.1 duplexInsertCell: Inserting Cells into HSS Links ..60
4.8.2 duplexExtractCell: Extracting Cells from HSS Links...61
4.8.3 duplexCheckExtractFifos: Getting Contents of the Extract-FIFO-Ready Register63
4.8.4 duplexEnableRxCellInd: Enabling the Received Cell Indicator64
4.8.5 duplexInstallCellTypeFn: Installing Callback Functions ..64

4.9 BOC Transmission and Reception...65
4.9.1 duplexTxBOC: Transmitting BOC ...65
4.9.2 duplexRxBOC: Reading from Received BOC ..66
4.9.3 duplexSetAutoRDITx: Transmitting Remote-Defect Indication Code Words.................67
4.9.4 duplexSciAnyPhyGetConfig: Getting SCI-PHY/Any-PHY Configuration Information...68
4.9.5 duplexSciAnyPhySetConfig: Configuring HSS-Links ...70

4.10 Clocked Serial-Data Interface Functions ...71
4.10.1 duplexRxSerChnlReadReg: Reading from Receive Serial-Channel Context Bytes71
4.10.2 duplexRxSerChnlWriteReg: Writing to Receive Serial-Channel Context Bytes72
4.10.3 duplexRxSerChnlHCSCntResetEn: Enabling Auto Reset of HCS Error Registers......73
4.10.4 duplexTxSerChnlReadReg: Reading from Transmit Serial-Channel Context Bytes74
4.10.5 duplexTxSerChnlWriteReg: Writing to Transmit Serial-Channel Context Bytes75

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 7

4.11 Statistics Collection ...76
4.11.1 duplexGetHssLnkRxCounts: Accumulating Counts for Received Cells76
4.11.2 duplexGetHssLnkTxCounts: Accumulating Counts for Transmitted Cells77
4.11.3 duplexGetAllHssCounts: Accumulating Counts for All Cells ..78
4.11.4 duplexGetStatisticCounts: Retrieving Driver Statistical Counts79
4.11.5 duplexResetStatisticCounts: Resetting Driver Statistical Counts.................................79

4.12 Indication Callbacks...80
4.12.1 indDuplexNotify: Notifying the Application of Significant Events80
4.12.2 indDuplexRxBOC: Notifying the Application of Received BOC....................................80
4.12.3 indDuplexRxCell: Notifying the Application of Ready Extract-Cell-FIFOs....................81

5 Real-Time-OS Interface Functions..83

5.1 Memory Allocation and Deallocation ...84
5.1.1 sysDuplexMemAlloc: Allocating Memory ...84
5.1.2 sysDuplexMemFree: Deallocating Memory..85

5.2 Buffer Management ...85
5.2.1 duplexGetIndBuf: Getting DPR Buffers ..85
5.2.2 duplexReturnIndBuf: Returning DPR Buffers ...86

5.3 Timer Operations...86
5.3.1 sysDuplexDelayFn: Delaying Functions ...86

5.4 Semaphore Operations ...86
5.4.1 sysDuplexSemCreate: Creating Semaphores..87
5.4.2 sysDuplexSemDelete: Deleting Semaphores...87
5.4.3 sysDuplexSemTake: Taking Semaphores...87
5.4.4 sysDuplexSemGive: Giving Semaphores...87

6 Hardware Interface Functions ...89

6.1 Device Register Access...89
6.1.1 sysDuplexRawRead: Reading from Register Address Locations90
6.1.2 sysDuplexRawWrite: Writing to Register Address Locations90
6.1.3 sysDuplexDeviceDetect: Getting Device Base Addresses...90

6.2 Interrupt Servicing ...91
6.2.1 duplexISR: Registering Interrupt Statuses ...92
6.2.2 duplexDPR: Processing Interrupts ...92
6.2.3 sysDuplexIntInstallHandler: Installing Interrupt Service Functions93
6.2.4 sysDuplexIntRemoveHandler: Removing Interrupt Service Functions94
6.2.5 sysDuplexIntHandler: Calling duplexISR..94
6.2.6 sysDuplexDPRTask: Calling duplexDPR ..95

7 Porting Drivers...97

7.1 Driver Source Files ..97

7.2 Driver Porting Procedures ...97
7.2.1 Porting Driver OS Extensions...98

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 8

7.2.2 Porting Drivers to Hardware Platforms...100
7.2.3 Porting Driver Application-Specific Elements...102
7.2.4 Building Drivers ..103

Appendix: Coding Conventions..105

Acronyms ...109

Index ..111

Contacting PMC-Sierra, Inc. ..118

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 9

LIST OF FIGURES

Figure 1: Driver Architecture ..17

Figure 2: Driver Software States ..20

Figure 3: Device Initialization, Re-initialization, and Shutdown ...22

Figure 4: Cell Extraction...23

Figure 5: Interrupt Service Model ..24

Figure 6: Polling Service Model ...26

Figure 7: Application Interface ...44

Figure 8: Real-Time OS Interface ..84

Figure 9: Hardware Interface ...89

Figure 10: Driver Source Files ...97

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 10

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 11

LIST OF TABLES

Table 1: Driver Functions and Features ...15

Table 2: Driver Software States..20

Table 3: Cell Header Structure: sDPX_CELL_HDR...29

Table 4: Cell Control Structure: sDPX_CELL_CTRL..30

Table 5: Initialization Vector: sDPX_INIT_VECTOR...31

Table 6: Device Registers: sDPX_REGS ...31

Table 7: SCI-PHY/Any-PHY Registers: sDPX_SCI_ANY_PHY_REGS...32

Table 8: HSS Link Registers: sDPX_HSS_REGS..32

Table 9: Clocked Serial-Interface Registers: sDPX_CLK_SER_REGS ...33

Table 10: Global Driver Database: sDPX_GDD ...34

Table 11: Device Data Block: sDPX_DDB..34

Table 12: Interrupt Enables: sDPX_INT_ENBLS ...37

Table 13: Interrupt Context: sDPX_INT_CTXT...38

Table 14: HSS Counts: sDPX_HSS_CNTS..38

Table 15: Statistical Counts: sDPX_STAT_COUNTS ...39

Table 16: Definition of Variable Types...105

Table 17: Variable Naming Conventions...106

Table 18: Function and Macro Naming Conventions ...107

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 12

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 13

1 DRIVER PORTING QUICK START

This section summarizes how to port the S/UNI-DUPLEX device driver to your
hardware and operating system (OS) platform.

Note: Because each platform and application is unique, this manual can only offer
guidelines for porting the S/UNI-DUPLEX driver.

The code for the S/UNI-DUPLEX driver is organized into C source files. You may
need to modify the code or develop additional code. The code is in the form of
constants, macros, and functions. For the ease of porting, the code is grouped into
source files (src) and include files (inc). The src files contain the functions and the
inc files contain the constants and macros.

To port the S/UNI-DUPLEX driver to your platform:

1. Port the driver’s OS extensions (page 98):

• Data types

• OS-specific services

• Utilities and interrupt services that use OS-specific services

2. Port the driver to your hardware platform (page 100):

• Port the device detection function.

• Port low-level device read-and-write macros.

• Define hardware system-configuration constants.

3. Port the driver’s application-specific elements (page 102):

• Define the task-related constants.

• Code the callback functions.

4. Build the driver (page 103).

For more information about porting the S/UNI-DUPLEX driver, see section 7.

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 14

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 15

2 DRIVER FUNCTIONS AND FEATURES

The following table lists the main functions and features offered by the
S/UNI-DUPLEX driver. You can alter these functions by modifying or adding to the
driver’s code.

Table 1: Driver Functions and Features

Functions Description

Device Addition
and Deletion

(page 45)

These functions perform the following tasks:

• Reset new devices

• Allocate and initialize memory that will store context
information for new devices

• Deallocate device context memory during device shutdown

Device
Initialization

(page 49)

These functions initialize the S/UNI-DUPLEX device and its
associated context structures.

Device
Diagnostics

(page 53)

These functions write values to registers and read them back to
verify the microprocessor’s input and output interface with the
device. They enable and disable internal and external loopback
for the S/UNI-DUPLEX device’s high-speed serial (HSS)
interfaces. They also monitor the device’s clocks.

HSS Link
Configuration

(page 56)

These functions configure the HSS links of the S/UNI-DUPLEX
device by programming the HSS link registers according to the
parameters specified.

Cell Insertion
and Extraction

(page 59)

These functions insert cells into, and extract cells from, the
S/UNI-DUPLEX device control channels by manipulating the
insert and extract FIFO control and status registers.

BOC
Transmission
and Reception

(page 65)

These functions transmit and receive BOC on the HSS
interfaces. Writing to the transmit-BOC registers transmits BOC.
BOC is received by monitoring the receive-BOC
status-registers.

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 16

Statistics
Collection

(page 67)

These functions retrieve the device counts (including cells
received, cells transmitted, and errored cells received) for
accumulation by the application.

Interrupt
Servicing

(page 23)

These functions clear the interrupts raised by the
S/UNI-DUPLEX device. Then they queue the interrupt status for
later processing by a deferred interrupt-processing routine
(DPR). The DPR runs in the context of a separate task within
the RTOS and takes appropriate actions based on the interrupt
status queued for it by the Interrupt Servicing Routine (ISR).

In polling mode, the DPR process periodically services the
interrupt status.

Indication
Callbacks

(page 80)

The DPR uses indication callback functions to notify the
application of events in the S/UNI-DUPLEX device and driver.
These events include the reception of cells in the
microprocessor extract cell FIFOs and the reception of valid
BOC.

2.1 Driver Architecture

The driver includes seven main modules:

• Driver API module

• Real-time-OS interface module

• Hardware interface module

• Driver library module

• Device data-block module

• Interrupt-service routine module

• Deferred-processing routine module

For more information about these modules, see the following sections.

Figure 1 illustrates the architectural modules of the S/UNI-DUPLEX driver.

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 17

Figure 1: Driver Architecture

 Function
Calls

Register
Access

Hardware
Interrupts

Service
Calls

Application

R
T

O
S

S /UNI-DUPLEX Device

Driver API

Deferred
Processing

Routine

Interrupt
Servicing
Routine

Driver
Library

Funct ions

Device
Data Block

Interrupt
Context

S/UNI-
DUPLEX

Driver
R

T
O

S
 In

te
rf

ac
e

Hardware Interface

Indication
Cal lbacks

2.1.1 Driver API Module

The driver’s API is a collection of high level functions that can be called by
application programmers to configure, control, and monitor the S/UNI-DUPLEX
device, such as:

• Initializing the device

• Validating device configuration

• Retrieving device status and statistics information.

• Diagnosing the device

The driver API functions use the driver library functions as building blocks to provide
this system level functionality to the application programmer (see below).

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 18

The driver API also consists of callback functions that notify the application of
significant events that take place within the device and driver, including cell and BOC
reception.

2.1.2 Driver Real-Time-OS Interface Module

The driver’s RTOS interface module provides functions that let the driver use RTOS
services. The S/UNI-DUPLEX driver requires the memory, interrupt, and preemption
services from the RTOS. The RTOS interface functions perform the following tasks
for the S/UNI-DUPLEX device and driver:

• Allocate and deallocate memory

• Manage buffers for the DPR

• Pause task execution

• Manage semaphores

The RTOS interface also includes service callbacks. These are functions installed by
the driver using RTOS service calls, such as install interrupts and start timers. These
service callbacks are invoked when an interrupt occurs or a timer expires.

Note: You must modify RTOS interface code to suit your RTOS.

2.1.3 Driver Hardware-Interface Module

The S/UNI-DUPLEX hardware interface provides functions that read from and write
to S/UNI-DUPLEX device-registers. The hardware interface also provides a template
for an ISR that the driver calls when the device raises a hardware interrupt. You must
modify this function based on the interrupt configuration of your system.

2.1.4 Driver Library Module

The driver library module is a collection of low-level utility functions that manipulate
the device registers and the contents of the driver’s DDB. The driver library functions
serve as building blocks for higher level functions that constitute the driver API
module. Application software does not normally call the driver library functions.

2.1.5 Device Data-Block Module

The DDB stores context information about the S/UNI-DUPLEX device, such as:

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 19

• Device state

• Control information

• Initialization vector

• Callback function pointers

• Statistical counts

The driver allocates context memory for the DDB when the driver registers a new
device.

2.1.6 Interrupt-Service Routine Module

The S/UNI-DUPLEX driver provides an ISR called duplexISR that checks if there
are any valid interrupt conditions present for the device. This function can be used by
a system-specific interrupt-handler function to service interrupts raised by the device.

The low-level interrupt-handler function that traps the hardware interrupt and calls
duplexISR is system and RTOS dependent. Therefore, it is outside the scope of the
driver. An example implementation of such an interrupt handler (see page 94) as well
as installation and removal functions (see page 93 and page 94) is provided as a
reference. You can customize these example implementations to suit your specific
needs.

See page 23 for a detailed explanation of the ISR and interrupt-servicing model.

2.1.7 Deferred-Processing Routine Module

The DPR provided by the S/UNI-DUPLEX driver (duplexDPR) clears and processes
interrupt conditions for the device. Typically, a system specific function, which runs as
a separate task within the RTOS, executes the DPR.

See page 23 for a detailed explanation of the DPR and interrupt-servicing model.

2.2 Driver Software States

Figure 2 shows the software state diagram for the S/UNI-DUPLEX driver. State
transitions occur on the successful execution of the corresponding transition
functions shown. State information helps maintain the integrity of the driver’s DDB by
controlling the set of device operations allowed in each state. Table 2 describes the
software states for the S/UNI-DUPLEX device as maintained by the driver.

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 20

Figure 2: Driver Software States

Present

Init Active

duplexReset

duplexReset duplexReset

duplexActivate

duplexInit

duplexDeactivate

Empty

duplexAdd
duplexDelete

Table 2: Driver Software States

State Description

Empty The S/UNI-DUPLEX device is not registered. This is the initial state.

Present The driver has detected the S/UNI-DUPLEX device and the drive has
passed power-on self-tests. The driver has allocated memory to store
context information about this device.

Init An initialization vector passed by the application has successfully
initialized the S/UNI-DUPLEX device. The initialization parameters have
been validated and the device has been configured by writing
appropriate bits in the control registers of the device.

Active The S/UNI-DUPLEX device has been activated. This means that the
device interrupts have been enabled and the device is ready for normal
operation.

2.3 Processing Flows

This section describes some of the main processing flows of the S/UNI-DUPLEX
driver:

• Device initialization, re-initialization, and shutdown

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 21

• Cell extraction

• Interrupt servicing

• Polling servicing

The flow diagrams presented here illustrate the sequence of operations that take
place for different driver functions. The diagrams also serve as a guide to the
application programmer by illustrating the sequence in which the application must
invoke the driver API.

2.3.1 Device Initialization, Re-initialization, and Shutdown

The following figure shows the functions and process that the driver uses to initialize,
re-initialize, and shutdown the S/UNI-DUPLEX device.

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 22

Figure 3: Device Initialization, Re-initialization, and Shutdown

De-activates the device and removes i t from normal operation. This
involves disabling the device interrupts. The ISR routine for this device is
removed using sysDuplexIntRemoveHandler.

Applies a software reset to the device to put it in its default startup state. It
also resets the context information for that device.

Removes the device from the l ist of devices being control led by the
S/UNI-DUPLEX driver. This function de-al locates the device context
information for the device being deleted.

In order to re-init ial ize the device, resets the device using duplexReset and
goes through the init ial ization sequence again.

Prepares the device for normal operation by enabling interrupts and other
global enables l ike HSS l inks transmitter. An ISR function is instal led using
sysDuplexIntInstal lHandler. The device is now operational and al l other
API can be invoked.

(OPTIONAL) Instal ls cal lback functions using these two functions i f
necessary. These cal lbacks can also be instal led by passing them in the
init ial ization vector argument of the duplexInit function.

Init ial izes the device based on an init ial ization vector provided by the
application. The init ial ization vector is validated by the application and
stored by the driver as part of device context information. The device
registers are then configured accordingly.

Detects the device being added in the hardware (using
sysDuplexDeviceDetect), al locates memory for storing device context
information, and applies a software reset to the device.

duplexInstal l IndFn
duplexInstal lCellTypeFn

duplexInit

duplexAdd

duplexActivate

duplexReset

duplexDeactivate

duplexReset

duplexDelete

END

START

2.3.2 Cell Extraction

The following figure shows the functions and process that the driver uses to extract
cells from the S/UNI-DUPLEX device.

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 23

Figure 4: Cell Extraction

After extract ing al l the cel ls from the Extract FIFOs of the S/UNI-DUPLEX device, the cel l
recept ion task re-enables the RX indicat ion for the device.

Cel ls are now dequeued by repeatedly invoking duplexExtractCel l t i l l the Extract FIFOs are
empty. The message complet ion is detected by an End of Message bi t in a cel l type f lag
output from pCel lTypeFn funct ion. The funct ion is instal led by the appl icat ion as a cal lback
funct ion. The Extract FIFOs are again checked to see i f there are any more cel ls to be
extracted.

The cel l recept ion task now checks the status of the Extract FIFOs of the S/UNI-DUPLEX
device. This funct ion determines which extract FIFOs have cel ls to be dequeued.

The deferred processing rout ine invokes this indicat ion cal lback funct ion to inform the
appl icat ion of a cel l reception. The indDuplexRxCell funct ion is typical ly implemented as a
message queuing funct ion that sends a message to another task (referred to henceforth as
the cel l recept ion task) that is dedicated to process received cel ls. The deferred processing
routine also disables further RX indicat ions.

duplexExtractCel l

duplexCheckExtractFi fos

indDuplexRxCel l

duplexEnableRxInd

E N D

S T A R T

2.3.3 Interrupt Servicing

The S/UNI-DUPLEX driver services device interrupts using an interrupt service
routine (ISR) that traps interrupts and a deferred interrupt-processing routine (DPR)
that actually processes the interrupt conditions and clears them. This lets the ISR
execute quickly and exit. Most of the time-consuming processing of the interrupt
conditions is deferred to the DPR by queuing the necessary interrupt-context
information to the DPR task. The DPR function runs in the context of a separate task
within the RTOS.

Note: Since the DPR task processes potentially serious interrupt conditions, you
should set the DPR task’s priority higher than the application task interacting with the
S/UNI-DUPLEX driver.

The driver provides system-independent functions, duplexISR and duplexDPR .
You must fill in the corresponding system-specific functions, sysDuplexISR and
sysDuplexDPR . The system-specific functions isolate the system-specific
communication mechanism (between the ISR and DPR) from the
system-independent functions, duplexISR and duplexDPR .

Figure 5 illustrates the interrupt service model used in the S/UNI-DUPLEX driver
design.

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 24

Figure 5: Interrupt Service Model

duplexISR

sysDuplexIntHandler

duplexDPR

Interrupt
Context

Information
sysDuplexDPRTask Indication

Cal lbacks

Application

Note: Instead of using an interrupt service model, you can use a polling service
model in the S/UNI-DUPLEX driver to process the device’s event-indication registers
(see page 26).

Calling duplexISR

An interrupt handler function, which is system dependent, must call duplexISR . But
first, the low-level interrupt-handler function must trap the device interrupts. You must
implement this function for your system. As a reference, an example implementation
of the interrupt handler (sysDuplexIntHandler) appears on page 94. You can
customize this example implementation to suit your needs.

The interrupt handler that you implement (sysDuplexIntHandler) is installed in
the interrupt vector table of the system processor. Then it is called when one or more
S/UNI-DUPLEX devices interrupt the processor. The interrupt handler then calls
duplexISR for each device in the active state.

The duplexISR function reads from the master interrupt-status register and the
miscellaneous interrupt-status register of the S/UNI-DUPLEX. Then duplexISR
returns with this status information if a valid status bit is set. If a valid status bit is set,
the duplexISR also disables that device’s interrupts. The sysDuplexIntHandler
function then sends a message to the DPR task that consists of the device handles
of all the S/UNI-DUPLEX devices that had valid interrupt conditions.

Note: Normally you should save the status information for deferred interrupt
processing by implementing a message queue. The interrupt handler sends the
status information to the queue by the sysDuplexIntHandler .

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 25

Calling duplexDPR

The sysDuplexDPRTask function is a system specific function that runs as a
separate task within the RTOS. You should set the DPR task’s priority higher than the
application task(s) interacting with the S/UNI-DUPLEX driver. In the message-queue
implementation model, this task has an associated message queue. The task waits
for messages from the ISR on this message queue. When a message arrives,
sysDuplexDPRTask calls the DPR (duplexDPR).

Then duplexDPR processes the status information and takes appropriate action
based on the specific interrupt condition detected. The nature of this processing can
differ from system to system. Therefore, duplexDPR calls different indication
callbacks for different interrupt conditions.

Typically, you should implement these callback functions as simple message posting
functions that post messages to an application task. However, you can implement the
indication callback to perform processing within the DPR task context and return
without sending any messages. In this case, ensure that the indication function does
not call any API functions that change the driver’s state, such as duplexDelete .
Also, ensure that the indication function is non-blocking because the DPR task
executes while S/UNI-DUPLEX interrupts are disabled. You can customize these
callbacks to suit your system. See page 80 for a description of the callback functions.

Note: Since the duplexISR and duplexDPR routines themselves do not specify a
communication mechanism, you have full flexibility in choosing a communication
mechanism between the two. A convenient way to implement this communication
mechanism is to use a message queue, which is a service that most RTOSs provide.

You must implement the two system specific functions, sysDuplexIntHandler
and sysDuplexDPRTask . When the driver calls sysDuplexIntInstallHandler
for the first time, the driver installs sysDuplexIntHandler in the interrupt vector
table of the processor. The sysDuplexDPRTask function is also spawned as a task
during this first time invocation of sysDuplexIntInstallHandler . The
sysDuplexIntInstallHandler function also creates the communication channel
between sysDuplexIntHandler and sysDuplexDPRTask . This communication
channel is most commonly a message queue associated with the
sysDuplexDPRTask .

Similarly, during removal of interrupts, the driver removes sysDuplexIntHandler
from the microprocessor’s interrupt vector table and deletes the task associated with
sysDuplexDPRTask .

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 26

As a reference, this manual provides example implementations of the interrupt
installation and removal functions. For more information about the interrupt
installation function and prototype, see page 93. For more information about the
interrupt removal function and prototype, see page 94. You can customize these
prototypes to suit your specific needs.

2.3.4 Polling Servicing

Instead of using an interrupt service model, you can use a polling service model in
the S/UNI-DUPLEX driver to process the device’s event-indication registers.

Figure 6 illustrates the polling service model used in the S/UNI-DUPLEX driver
design.

Figure 6: Polling Service Model

duplexDPR

sysDuplexDPRTask Indication
Cal lbacks

Application

Task Delay

The polling service code includes some system specific code (prefixed by
“sysDuplex ”), which typically you must implement for your application. The polling
service code also includes some system independent code (prefixed by “duplex ”)
provided by the driver that does not change from system to system.

In polling mode, sysDuplexIntHandler and duplexISR are not used. Instead,
the driver spawns a sysDuplexDPRTask function as a task processor when the
driver calls sysDuplexIntInstallHandler for the first time.

In sysDuplexDPRTask , the driver-supplied DPR (duplexDPR) is periodically called
for each device in the active state. The duplexDPR reads from the master
interrupt-status and miscellaneous interrupt-status registers of the S/UNI-DUPLEX. If
some valid status bits are set, it processes the status information and takes
appropriate action based on the specific interrupt condition detected.

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 27

The nature of this processing can differ from system to system. Therefore, the DPR
calls different indication callbacks for different interrupt conditions. You can customize
these callbacks to fit your application’s specific requirements. See page 80 for a
description of these callback functions.

Similarly, during removal of polling service, the driver removes the task associated
with sysDuplexDPRTask if none of S/UNI-DUPLEX devices is activated.

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 28

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 29

3 DRIVER DATA STRUCTURES

The S/UNI-DUPLEX driver uses several data structures. These structures help to:

• Control and store cell header information

• Configure the S/UNI-DUPLEX device

• Identify the device’s context

• Support interrupt processing

• Store indication callbacks

3.1 Cell Data Structures

This section describes the data structures that the driver uses to help control cell
insertion and extraction. These structures serve as templates for received and
transmitted cells.

3.1.1 Cell-Header Data Structure

The following structure stores cell header data.

Table 3: Cell Header Structure: sDPX_CELL_HDR

Member Name Type Description

u1UsrPrpnd[2] UINT1 Two prepend bytes that you specify

u1Hdr[5] UINT1 H1-H5 cell header bytes

u1UDF UINT1 A field you define

3.1.2 Cell-Control Data Structure

The following structure controls cell insertion and extraction operations.

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 30

Table 4: Cell Control Structure: sDPX_CELL_CTRL

Member Name Type Description

u4Crc32Prev UINT4 The CRC-32 value in the insert and extract CRC-32
accumulator registers after the previous cell was
inserted or extracted. Used to preset the accumulator
registers before inserting or extracting the next cell.

u4Crc32 UINT4 The CRC-32 value in the insert and extract
accumulator registers after the current cell was
inserted or extracted.

u1CellType UINT1 A flag used by the driver to indicate that the cell
extracted is the last cell or first cell of a message, and
is CRC protected or not.

• Bit 0:

• If 1, then CRC-32 on
• If 0, then CRC-32 off

• Bit 1:

• If 1, then first cell
• If 0, then not first cell

• Bit 2:

• If 1, then last cell
• If 0, then not last cell

3.2 Device-Configuration Data Structures

This section describes the data structures that the driver uses to initialize and
configure the S/UNI-DUPLEX device.

3.2.1 Initialization Data Structure

The device initialization function initializes the S/UNI-DUPLEX device and its
associated context structures. This involves reading an initialization vector. The driver
validates this vector and then configures the S/UNI-DUPLEX device accordingly.

The application sets the initialization vector before initializing a S/UNI-DUPLEX
device. The initialization vector contains configuration parameters that the driver uses
to program the S/UNI-DUPLEX device control-registers.

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 31

Note: The application must free the initialization vector memory.

Table 5: Initialization Vector: sDPX_INIT_VECTOR

Member Name Type Description

sRegInfo sDPX_REGS Contains the values that the driver will
write to the control registers of the
S/UNI-DUPLEX device

indNotify DPX_IND_CB_FN Indication callback function called by
the DPR when a significant event
occurs in the driver software

indRxBOC DPX_IND_CB_FN Indication callback function called by
the DPR to forward a received valid
BOC to the application

indRxCell DPX_IND_CB_FN Indication callback function called by
the DPR when the driver must read
cells from the Extract FIFOs

pCellTypeFn DPX_CELLTYPE_FN A Cell Type detector function that is
used by the driver to determine if a
cell extracted is the last or first of a
particular message, and/or if it is
CRC-32 protected

u4Reserved UINT4 Placeholder for future use

3.2.2 Register Data Structure

The register data structure contains the initial values that the driver will write to the
S/UNI-DUPLEX device control-registers.

Table 6: Device Registers: sDPX_REGS

Member Name Type Description

u1MasterCfg UINT1 Master configuration
register

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 32

Member Name Type Description

sSciAnyPhyRegs sDPX_SCI_ANY_PHY_REGS SCI-PHY/Any-PHY
configuration registers

sHssRegs sDPX_HSS_REGS HSS-link configuration
registers

sClkSerRegs sDPX_CLK_SER_REGS Clocked-bit serial-interface
configuration registers

sIntEnRegs sDPX_INT_ENBLS Interrupt enable registers

Table 7: SCI-PHY/Any-PHY Registers: sDPX_SCI_ANY_PHY_REGS

Member Name Type Description

u1ExtAddrMatch[2] UINT1 Extended address match [2 bytes (LSB,
MSB)]

u1ExtAddrMask[2] UINT1 Extended address mask [2 bytes (LSB,
MSB)]

u1OutAddrMatch UINT1 Output address match register

u1SciAnyPhyInpCfg[2] UINT1 SCI-PHY/Any-PHY input configuration
(2 bytes)

u1ICAEnable[4] UINT1 Input cell available enable (4 bytes)

u1SciAnyPhyOutCfg UINT1 SCI-PHY/Any-PHY output configuration

u1SciAnyPhyOutPollRng UINT1 SCI-PHY/Any-PHY output polling range

Table 8: HSS Link Registers: sDPX_HSS_REGS

Member Name Type Description

u1RxCfg[2] UINT1 Receive HSS configuration [2 bytes (RXD1,
RXD2)]

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 33

Member Name Type Description

u1RxCfg[2] UINT1 Receive HSS configuration [2 bytes (RXD1,
RXD2)]

u1RxHcsPass[2] UINT1 Receive HSS cell-filtering configuration
(HCSPASS) [2 bytes (RXD1, RXD2)]

u1TxCfg UINT1 Transmit HSS configuration

Table 9: Clocked Serial-Interface Registers: sDPX_CLK_SER_REGS

Member Name Type Description

u1RxCfg[16] UINT1 Receive serial indirect-channel
configuration

u1RxLcdCntThresh[16] UINT1 Receive serial LCD-count threshold

u1TxSerIndChnlData[16] UINT1 Transmit serial indirect-channel data
register

u1TxFrameBitThresh UINT1 Transmit serial framing-bit threshold

3.3 Device-Context Data Structures

This section describes the data structures that the driver uses to store data about the
S/UNI-DUPLEX device and related devices.

3.3.1 Global Driver-Database Structure

The Global Driver Database (GDD) stores module level data, such as the number of
devices that the driver controls and an array of pointers to the individual device
context structures (DDBs).

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 34

Table 10: Global Driver Database: sDPX_GDD

Member Name Type Description

u1NumDevs UINT1 Number of devices added

pDdb[DPX_MAX_NUM_DEVS] sDPX_DDB* Array of pointers to the
individual DDBs

u4Reserved UINT4 Reserved for future use

3.3.2 Device Data-Block Structure

The DDB contains device context data, such as:

• Device state

• Control data

• Initialization vector

• Callback function pointers

The driver allocates the DDB memory when the driver registers a new device. The
memory is deallocated when an existing device is deleted.

Table 11: Device Data Block: sDPX_DDB

Member Name Type Description

usrCtxt DPX_USR_CTXT This variable stores the
device’s role in the context of
your system. The driver passes
it as an input parameter when
the driver calls an application
callback.

pSysInfo VOID * Pointer to system-specific
device information. For
example, in PCI bus
environments, the bus, device,
function numbers, IRQ
assignment etc.

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 35

Member Name Type Description

u4BaseAddr UINT4 Base address of the device

eDevMode eDPX_MODE Device mode, which can be
one of:

• DPX_SCI_MASTER

• DPX_SCI_ANY_SLAVE

• DPX_CLK_BIT_SER

eDevState eDPX_STATE Device state, which can be one
of the following enumerated
type values:

• DPX_EMPTY

• DPX_PRESENT

• DPX_INIT

• DPX_ACTIVE

u1IntrProcEn UINT1 1: Interrupt processing enabled

0: Interrupt processing disabled

sInitVector sDPX_INIT_VECTOR Device configuration
information passed by the
application to the driver. The
driver writes the appropriate
S/UNI-DUPLEX device
registers based on the contents
of this vector.

sIntEnbls sDPX_INT_ENBLS Maintains a snapshot of the
current interrupt-enables
registers for the
S/UNI-DUPLEX device

indNotify DPX_IND_CB_FN Indication callback function
called by the DPR when a
significant event occurs in the
driver software

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 36

Member Name Type Description

indRxBOC DPX_IND_CB_FN Indication callback function
called by the DPR to forward a
received valid BOC to the
application

indRxCell DPX_IND_CB_FN Indication callback function
called by the DPR when the
driver must read cells from the
Extract FIFOs

pCellTypeFn DPX_CELLTYPE_FN A cell-type detector function
that the driver uses to
determine if a cell extracted is
the last or first cell of a the
message, and if it is CRC
protected

sStatCounts sDPX_STAT_COUNTS Contains the statistical counts
for events and the number of
interrupts

lockId DPX_SEM_ID Semaphore ID for the data
structure. It is used for mutual
exclusion access to the
structure.

u4Reserved UINT4 Placeholder for future use

3.4 Interrupt Data Structures

This section describes the data structures that the S/UNI-DUPLEX driver uses to
queue interrupt context data for interrupt-enable bit-setting data.

3.4.1 Interrupt-Enable Data Structure

The interrupt-enable bit-setting data is queued in the following structure.

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 37

Table 12: Interrupt Enables: sDPX_INT_ENBLS

Member Name Type Description

u1MasterEn UINT1 Master Interrupt Enable

u1RoolEn UINT1 ROOLE bit (tracks change in ROOLV
bit; located in clock monitor register)

u1SciAnyPhyInpIntEn UINT1 SCI-PHY/Any-PHY Input Interrupt
Enables

u1SciAnyPhyOutIntEn UINT1 SCI-PHY/Any-PHY Output Interrupt
Enable (CELLXFERRE bit)

u1MicroCellBufCtrl UINT1 Microprocessor Cell Buffer Interrupt
Control

u1RxLogChnlFifoCtrl UINT1 Receive Logical Channel FIFO
Control (FOVRE bit)

u1RxHssExtractFifoOvr[2] UINT1 RXD1 and RXD2 Extract FIFO
Control (UPF1OVRE bit)

u1RxHssIntEn[2] UINT1 Receive HSS Interrupt Enables [2
bytes (RXD1, RXD2)]

u1RxHssBocIntEn[2] UINT1 Receive HSS BOC Interrupt Enables
[2 bytes (RXD1, RXD2)]

u1TxLogChnlFifoCtrl UINT1 Transmit Logical Channel FIFO
Control (FOVRE bit)

u1RxClkSerIntEn[16] UINT1 Receive Serial Indirect Channel
Interrupt Enables

3.4.2 Interrupt-Context Data Structure

The following structure passes interrupt context data from the interrupt servicing
routine to the DPR.

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 38

Table 13: Interrupt Context: sDPX_INT_CTXT

Member Name Type Description

u1NumDevs UINT1 Number of devices for which interrupts
have to be processed

pu4DevHandles
[DPX_MAX_NUM_DEVS]

UINT4* Array of size DPX_MAX_NUM_DEVS. The
first u1NumDevs elements of this array
contain the device handles for the devices
for which interrupts have to be processed.

3.5 Count Structures

This section describes the data structures that the S/UNI-DUPLEX driver uses to
store counts.

3.5.1 HSS Counts

This section describes the data structure that the driver uses to store the number of
HSS cells received and transmitted, and the number of cells that failed to be
received.

Table 14: HSS Counts: sDPX_HSS_CNTS

Member Name Type Description

u4RxCells[2] UINT4 Cells received count [2 words (RXD1, RXD2)]

u4TxCells UINT4 Cells transmitted count

u1HcsErrs[2] UINT1 HCS received count [2 bytes (RXD1, RXD2)]

3.5.2 Statistical Counts

This section describes the data structure that the driver uses to store statistical
counts.

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 39

Table 15: Statistical Counts: sDPX_STAT_COUNTS

Member Name Type Description

Count_Tx_Hss_Count_Overflow UINT4 Corresponds to register
0x61, bit 5

Count_Tx_Hss_Count_Updated UINT4 Corresponds to register
0x61, bit 6

Count_Rx_Lc_Fifo_Overflow UINT4 Corresponds to register
0x3D, bit 0

Count_Tx_Lc_Fifo_Overflow UINT4 Corresponds to register
0x5D, bit 0

Count_Phy_Input_Cell_Xfered UINT4 Corresponds to register 0x0F,
bit 2

Count_Invalid_SOC_Sequence UINT4 Corresponds to register 0x0F,
bit 1

Count_Phy_Input_Parity UINT4 Corresponds to register 0x0F,
bit 0

Count_Phy_Output_Error UINT4 Corresponds to register
0x14, bit 7

Count_Micro_Insert_Fifo_Ready UINT4 Corresponds to register
0x20, bit 4

Count_Micro_Insert_Fifo_Full UINT4 Corresponds to register
0x20, bit 5

Count_Extract_Cell_CRC_Error UINT4 Corresponds to register
0x20, bit 7

Count_Clock_Lock_Fail UINT4 Corresponds to register
0x04, bit 3

Count_RxSerChnl_Out_Of_Delin
[16]

UINT4 Corresponds to register
0x6B, bits 0,6

Count_RxSerChnl_In_Delin[16] UINT4 Corresponds to register
0x6B, bits 0,6

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 40

Member Name Type Description

Count_RxSerChnl_Fifo_Overflow
[16]

UINT4 Corresponds to register
0x6B, bit 1

Count_RxSerChnl_HCS_Error[16] UINT4 Corresponds to register
0x6B, bit 2

Count_RxSerChnl_Out_Of_Sync
[16]

UINT4 Corresponds to register
0x6B, bits 3,7

Count_RxSerChnl_in_Sync[16] UINT4 Corresponds to register
0x6B, bits 3,7

Count_RxHss_Extract_Fifo_
Overflow[2]

UINT4 Corresponds to registers
0x31, 0x35, bit 0

Count_RxHss_Loss_Of_Signal[2] UINT4 Corresponds to registers:

• 0x43, 0x53, bit 0

• 0x41, 0x51, bit 0

Count_RxHss_Signal_Detected
[2]

UINT4 Corresponds to registers:

• 0x43, 0x53, bit 0

• 0x41, 0x51, bit 0

Count_RxHss_Out_Of_Delin[2] UINT4 Corresponds to registers:

• 0x43, 0x53, bit 1

• 0x41, 0x51, bit 1

Count_RxHss_In_Delin[2] UINT4 Corresponds to registers:

• 0x43, 0x53, bit 1

• 0x41, 0x51, bit 1

Count_RxHss_Active_Bit[2] UINT4 Corresponds to registers:

• 0x43, 0x53, bit 2

• 0x41, 0x51, bit 2

Count_RxHss_No_Active_Bit[2] UINT4 Corresponds to registers:

• 0x43, 0x53, bit 2

• 0x41, 0x51, bit 2

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 41

Member Name Type Description

Count_RxHss_Out_Of_Sync[2] UINT4 Corresponds to registers:

• 0x43, 0x53, bit 4

• 0x41, 0x51, bit 4

Count_RxHss_In_Sync[2] UINT4 Corresponds to registers:

• 0x43, 0x53, bit 4

• 0x41, 0x51, bit 4

Count_RxHss_CRC8_Error[2] UINT4 Corresponds to registers
0x43, 0x53, bit 3

Count_RxHss_HCS_Error[2] UINT4 Corresponds to registers
0x43, 0x53, bit 5

Count_RxHss_Count_Updated[2] UINT4 Corresponds to registers
0x43, 0x53, bit 6

Count_RxHss_Count_Overflow[2] UINT4 Corresponds to registers
0x43, 0x53, bit 7

Count_Rx_BOCs[2] UINT4 Corresponds to registers
0x19, 0x1B, bit 6

Count_Extract_Cells UINT4 Corresponds to register
0x20, bit 6

Count_Interrupts UINT4 Number of interrupts
occurred for the device

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 42

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 43

4 APPLICATION INTERFACE FUNCTIONS

The driver's API is a collection of high level functions that application programmers
can call to configure, control, and monitor S/UNI-DUPLEX devices.

Note: These functions are not re-entrant. This means that two application tasks
cannot invoke the same API at the same time. However, the driver protects it’s data
structures from concurrent accesses by the application and the DPR task.

The application interface also consists of callback functions. These callback functions
notify the application of significant events that take place within the device and driver,
such as:

• Occurrence of critical errors

• Reception of cells

• Reception of valid BOCs

The duplexDPR routine invokes the indication callback functions. These execute in
the context of the DPR task. Typically, these callback routines are implemented as
simple message posting routines that post messages to an application task.
However, the user can choose to implement the indication callback to perform
processing within the DPR task context and return without sending any messages. In
this case, ensure that the indication routine does not call any API function that
changes the driver’s state, such as duplexDelete.

The indication routine should be non-blocking because the DPR task executes while
interrupts are disabled. The DPR task is also responsible for re-enabling device
interrupts once the deferred processing is complete.

Many API functions change the device’s state. For information about device states,
see page 19.

Figure 7 illustrates the external interfaces defined for the S/UNI-DUPLEX driver.

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 44

Figure 7: Application Interface

RTOS

 Function Calls Indication Callbacks

Register Access
Hardware
Interrupts

Service Calls

App lication

S/UNI-DUPLEX Driver

S/UNI-DUPLEX Device

App lication
Interface

4.1 Driver Initialization and Shutdown

This section describes the API functions used to initialize and shutdown the driver’s
modules.

4.1.1 duplexModuleInit: Initializing Driver Modules

This function performs module level initialization of the device driver. This involves
allocating memory for the GDD and initializing the data structure.

Valid States Not applicable

Side Effects None

Prototype INT4 duplexModuleInit(VOID)

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 45

Inputs None

Outputs None

Return Codes DPX_SUCCESS

DPX_ERR_MEM_ALLOC (memory allocation failure)

DPX_ERR_MODULE_ALREADY_INIT

4.1.2 duplexModuleShutdown: Shutting Down Driver Modules

This function performs module level shutdown of the driver. This involves deleting all
devices controlled by the driver and deallocating the GDD.

Valid States All states

Side Effects Resets all the devices, and removes interrupt handle and DPR
task

Prototype VOID duplexModuleShutdown(VOID)

Inputs None

Outputs None

Return Codes None

4.2 Device Addition, Reset, and Deletion

When you add a new S/UNI-DUPLEX device, the driver’s device-addition functions
allocate memory to store context information for new devices. The driver also applies
a software reset to the device. The device deletion function deallocates device
context memory during device shutdown.

4.2.1 duplexAdd: Adding Devices

This function detects the new device in the hardware, gets the base address of the
device, and allocates memory for the DDB. Then it stores the device’s role (within
your system’s context) and returns the pointer to the DDB as a handle back to your
system. You should use the device handle to identify the device on which the driver
will perform the operation.

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 46

This function also reads the configuration pins status register to determine the
configuration of the SCI-PHY/Any-PHY and clocked serial-data interfaces. The driver
uses this information to set the device mode in the DDB.

Valid States DPX_EMPTY

Side Effects This function puts the device in the DPX_PRESENT state. The
function applies a software reset to the device.

Prototype INT4 duplexAdd(DPX_USR_CTXT usrCtxt, DUPLEX
*pDuplex)

Inputs usrCtxt : Pointer to context information (maintained by your
system) for the device being added

Outputs pDuplex : Pointer to the S/UNI-DUPLEX device handle. The
variable type, DUPLEX, is actually the following type, which you
define:

• #define DUPLEX (void *)

This prevents the application from accessing the DDB directly.

Return Codes DPX_SUCCESS

DPX_ERR_INVALID_STATE (invalid device state)

DPX_ERR_DEV_NOT_DETECTED (device was not detected)

DPX_ERR_MEM_ALLOC (memory allocation failure)

DPX_ERR_DEV_ID_TYPE (invalid device ID and/or type)

4.2.2 duplexReset: Resetting Devices

This function applies a software reset to the S/UNI-DUPLEX device. It also resets all
of the device’s context information in the DDB (except for the initialization vector,
which it leaves unmodified). Typically, the driver calls this function during device
shutdown, or before re-initializing the device with an initialization vector.

Valid States All states except DPX_EMPTY

Side Effects This function puts the device in the DPX_PRESENT state.
Therefore, the driver must initialize the device after a reset.

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 47

Prototype INT4 duplexReset(DUPLEX duplex)

Inputs duplex : Pointer to DDB that contains device context information
maintained by the driver

Outputs None

Return Codes DPX_SUCCESS

DPX_ERR_INVALID_DEVICE (invalid device handle)

4.2.3 duplexRemoteReset: Resetting Other Devices

This function resets other devices by driving the RSTOB output pin of the
S/UNI-DUPLEX device low and then back to a high impedance state. It does this by
setting and resetting the RESET0 pin in the master configuration register.

Valid States All states except DPX_EMPTY

Side Effects None

Prototype INT4 duplexRemoteReset(DUPLEX duplex)

Inputs duplex : Pointer to DDB that contains device context information
maintained by the driver

Outputs None

Return Codes DPX_SUCCESS

DPX_ERR_INVALID_DEVICE (invalid device handle)

4.2.4 duplexDelete: Deleting Devices

This function removes the specified device from the list of devices controlled by the
S/UNI-DUPLEX driver. Deleting a device involves deallocating the DDB for that
device.

Valid States DPX_PRESENT

Side Effects This function changes the device state to DPX_EMPTY

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 48

Prototype INT4 duplexDelete(DUPLEX duplex)

Inputs duplex : Device handle used by the driver to access context
information for the device (DDB)

Outputs None

Return Codes DPX_SUCCESS

DPX_ERR_INVALID_DEVICE (invalid device handle)

DPX_ERR_INVALID_STATE (invalid device state)

4.3 Reading from and Writing to Devices

This section describes the API functions used to read from and write to
S/UNI-DUPLEX devices. Their tasks include reading from and writing to the registers
of a device.

4.3.1 duplexRead: Reading from Device Registers

This function can read from a register of a specific S/UNI-DUPLEX device by
providing the register identifier. This function derives the actual address location
based on the device handle and register identifier inputs. It then reads the contents
of this address location using the system specific macro, sysDuplexRawRead .

Prototype INT4 duplexRead(DUPLEX duplex, UINT2 u2RegId,
UINT1 *pu1Val)

Inputs duplex : Pointer to device context information

u2RegId : Register identifier

Outputs pu1Val : Register value

Return Codes DPX_SUCCESS

DPX_ERR_INVALID_DEVICE (invalid device handle)

DPX_ERR_EXCEED_REG_RANGE (u2RegId exceeds the register
range)

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 49

4.3.2 duplexWrite: Writing to Device Registers

This function can write to a register of a specific S/UNI-DUPLEX device by providing
the register identifier. This function derives the actual address location based on the
device handle and register identifier inputs. It then writes the contents of this address
location using the system specific macro, sysDuplexRawWrite .

Prototype INT4 duplexWrite(DUPLEX duplex, UINT2 u2RegId,
UINT1 u1Val)

Inputs duplex : Pointer to device context information

u2RegId : Register identifier

u1Val : Value to be written

Outputs None

Return Codes DPX_SUCCESS

DPX_ERR_INVALID_DEVICE (invalid device handle)

DPX_ERR_EXCEED_REG_RANGE (u2RegId exceeds the register
range)

4.4 Device Initialization

This section describes the API functions used to initialize S/UNI-DUPLEX devices.
Their tasks include initializing the device based on the initialization vector passed by
the application. They also install and remove the indication callback functions that
duplexDPR calls.

4.4.1 duplexInit: Initializing Devices

This function initializes the device based on the initialization vector passed by the
application. The driver validates this initialization vector and then stores it in the
device’s DDB. The driver then configures the device registers accordingly.

Valid States DPX_PRESENT

Side Effects This function puts the device in the DPX_INIT state

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 50

Prototype INT4 duplexInit(DUPLEX duplex, sDPX_INIT_VECT,
sInitVector)

Inputs duplex : Pointer to DDB that contains device context information
maintained by the driver

sInitVector : Initialization vector that the driver uses to
program the device registers

Outputs None

Return Codes DPX_SUCCESS

DPX_ERR_INVALID_DEVICE (invalid device handle)

DPX_ERR_INVALID_STATE (invalid device state)

DPX_ERR_INVALID_INIT_VECTOR (invalid initialization vector)

DPX_ERR_INDIRECT_CHANNEL_BUSY (Clocked serial channel
is busy and causes timeout when its registers are accessed)

4.4.2 duplexInstallIndFn: Installing Indication Callback Functions

This function installs the indication callback functions (which you define) that
duplexDPR calls. The function pointer is stored in the device context structure (the
DDB).

Valid States DPX_INIT

Side Effects None

Prototype INT4 duplexInstallIndFn(DUPLEX duplex,
eDPX_CB_TYPE eCbType, DPX_IND_CB_FN pCbFn)

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 51

Inputs duplex : Pointer to DDB that contains device context information
maintained by the driver

eCbType : Identifies the callback being installed, which can be
one of:

• DPX_CB_NOTIFY

• DPX_CB_RX_BOC

• DPX_CB_RX_CELL

pCbFn: Callback function that the driver is installing

Outputs None

Return Codes DPX_SUCCESS

DPX_ERR_INVALID_DEVICE (invalid device handle)

DPX_ERR_INVALID_CB_TYPE (invalid callback function type)

4.4.3 duplexRemoveIndFn: Removing Indication Callback Functions

This function removes the indication callback functions (which you define) that
duplexDPR calls.

Valid States DPX_INIT

Side Effects The driver will no longer report events to the application.

Prototype INT4 duplexRemoveIndFn(DUPLEX duplex,
eDPX_CB_TYPE eCbType)

Inputs duplex : Pointer to DDB that contains device context information
maintained by the driver

eCbType : Identifies the callback being installed, which can be
one of:

• DPX_CB_NOTIFY

• DPX_CB_RX_BOC

• DPX_CB_RX_CELL

Outputs None

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 52

Return Codes DPX_SUCCESS

DPX_ERR_INVALID_DEVICE (invalid device handle)

DPX_ERR_INVALID_CB_TYPE (invalid callback function type)

4.5 Device Activation and Deactivation

This section describes the API functions used to activate and deactivate
S/UNI-DUPLEX devices. These functions set the device interrupts and other global
enables.

4.5.1 duplexActivate: Activating Devices

This function activates the S/UNI-DUPLEX device by preparing it for normal
operation. This involves enabling device interrupts and other global enables (for
example, the HSS link transmitter).

Valid States DPX_INIT

Side Effects Puts the device in DPX_ACTIVE state.

Prototype INT4 duplexActivate(DUPLEX duplex)

Inputs duplex : Pointer to DDB that contains device context information
maintained by the driver

Outputs None

Return Codes DPX_SUCCESS

DPX_ERR_INVALID_DEVICE (invalid device handle)

DPX_ERR_INVALID_STATE (invalid device state)

4.5.2 duplexDeactivate: Deactivating Devices

This function de-activates the S/UNI-DUPLEX device and removes it from normal
operation. This involves disabling device interrupts and other global disables (for
example, the HSS link transmitter).

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 53

Valid States DPX_ACTIVE

Side Effects Puts the device in DPX_INIT state.

Prototype INT4 duplexDeactivate(DUPLEX duplex)

Inputs duplex : Pointer to DDB that contains device context information
maintained by the driver

Outputs None

Return Codes DPX_SUCCESS

DPX_ERR_INVALID_DEVICE (invalid device handle)

DPX_ERR_INVALID_STATE (invalid device state)

4.6 Device Diagnostics

This section describes the API functions used to diagnose the S/UNI-DUPLEX
device. Their tasks include:

• Verifying the correctness of the microprocessor’s access to the device registers

• Enabling or disabling a diagnostic or line loopback on the HSS interfaces

• Monitoring the activity of the device’s clocks

4.6.1 duplexRegisterTest: Verifying Device Register Access

This function verifies the correctness of the microprocessor’s access to the device
registers by writing values to the writable registers and reading them back.

Valid States DPX_PRESENT

Side Effects Puts the device in the DPX_PRESENT state after the test.
Therefore, the device should be re-initialized after calling this
function.

Prototype INT4 duplexRegisterTest(DUPLEX duplex)

Inputs duplex : Pointer to DDB that contains device context information
maintained by the driver

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 54

Outputs None

Return Codes DPX_SUCCESS

DPX_ERR_INVALID_DEVICE (invalid device handle)

DPX_ERR_INVALID_STATE (invalid device state)

DPX_FAILURE (test failed)

4.6.2 duplexLoopback: Enabling/Disabling Diagnostic or Line Loopback

This function enables or disables a diagnostic or line loopback on the HSS
interfaces.

Valid States All states except DPX_EMPTY

Side Effects None

Prototype INT4 duplexLoopback(DUPLEX duplex, UINT1
u1HssLnkId, UINT1 u1LpbkType, UINT1 u1Enable)

Inputs duplex : Pointer to DDB that contains device context information
maintained by the driver

u1HssLnkId : HSS link identifier. Valid identifiers are DPX_RXD1
and DPX_RXD2.

u1LpbkType : Type of loopback. It can be DPX_DIAG_LPBK or
DPX_LINE_LPBK.

u1Enable : Loopback operation requested. It can be
DPX_LPBK_SET or DPX_LPBK_RESET.

Outputs None

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 55

Return Codes DPX_SUCCESS

DPX_ERR_INVALID_DEVICE (invalid device handle)

DPX_ERR_INVALID_STATE (invalid device state)

DPX_ERR_INVALID_LPBK_TYPE (invalid loopback type)

DPX_ERR_INVALID_HSS_ID (invalid HSS-link identifier)

DPX_ERR_INVALID_FLAG (invalid loopback flag)

4.6.3 duplexGetClockStatus: Monitoring Device Clocks

This function monitors the activity of the S/UNI-DUPLEX device clocks. It reads the
contents of the clock monitor register and provides the status of each clock in a bit
vector format. The application should call this function periodically to check if the
clock signals are making low to high transitions.

Valid States All states except DPX_EMPTY

Side Effects None

Prototype INT4 duplexGetClockStatus(DUPLEX duplex, UINT1
*pu1ClkStat)

Inputs duplex : Pointer to DDB that contains device context information
maintained by the driver

Outputs pu1ClkStat : Contains the following bit vector that indicates the
active/inactive status of the S/UNI-DUPLEX device clocks. A one
in the bit position indicates that the clock is active. A zero
indicates that the clock is inactive.

• Bit 0: Input FIFO clock (IFCLK)
(SCI-PHY/Any-PHY Interface)

• Bit 1: Output FIFO clock (OFCLK)
(SCI-PHY/Any-PHY Interface)

• Bit 2: Reference clock input (REFCLK)

Return Codes DPX_SUCCESS

DPX_ERR_INVALID_DEVICE (invalid device handle)

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 56

4.7 HSS Link Configuration

This section describes the API functions used to configure HSS links. Their tasks
include:

• Retrieving the contents of the specified HSS-link’s configuration registers

• Configuring or modifying the contents of the specified HSS-link’s configuration
registers

• Getting a snapshot of the state of the eight HSS links for the specified device

• Retrieving the logical-channel address information for all HSS links of the
specified device

4.7.1 duplexHssActiveLnkGetCfg: Getting HSS-Link Selection Method Information

This function obtains information about the active-link selection method configured in
the Master Configuration register. This information states whether the active link is
set automatically by the S/UNI-DUPLEX, or if it was set manually by the application.
If the active link was set manually, then this information states what the manual
setting is.

Valid States DPX_INIT, DPX_ACTIVE

Side Effects None

Prototype INT4 duplexHssActiveLnkGetCfg(DUPLEX duplex,
eHSS_LNK_SEL *peLnkSel)

Inputs duplex : Pointer to DDB that contains device context information
maintained by the driver

Outputs peLnkSel : Specifies the HSS link selection. It can be one of:

• DPX_RX_HSS_LNK_SELECT_AUTO

• DPX_RX_HSS_LNK_SELECT_RXD1

• DPX_RX_HSS_LNK_SELECT_RXD2

Return Codes DPX_SUCCESS

DPX_ERR_INVALID_DEVICE (invalid device handle)

DPX_ERR_INVALID_STATE (invalid device state)

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 57

4.7.2 duplexHssActiveLnkSetCfg: Setting Active HSS Links

This function sets the active HSS link of the S/UNI-DUPLEX device. The active link
can be set automatically by the device or set manually by the application.

Valid States DPX_INIT, DPX_ACTIVE

Side Effects None

Prototype INT4 duplexHssActiveLnkSetCfg(DUPLEX duplex,
eHSS_LNK_SEL eLnkSel)

Inputs duplex : Pointer to DDB that contains device context information
maintained by the driver

eLnkSel : Specifies the HSS link selection, which can be one of:

• DPX_RX_HSS_LNK_SELECT_AUTO

• DPX_RX_HSS_LNK_SELECT_RXD1

• DPX_RX_HSS_LNK_SELECT_RXD2

Outputs None

Return Codes DPX_SUCCESS

DPX_ERR_INVALID_DEVICE (invalid device handle)

DPX_ERR_INVALID_STATE (invalid device state)

4.7.3 duplexHssGetConfig: Getting HSS-Link Configuration Information

This function retrieves the contents of the specified HSS link’s configuration
registers. With one call, this function can retrieve the value of individual configuration
registers as well as the entire configuration register set.

Valid States DPX_INIT, DPX_ACTIVE

Side Effects None

Prototype INT4 duplexHssGetConfig(DUPLEX duplex,
eDPX_HSS_REG eHssRegId, sDPX_HSS_REGS
*psHssRegs)

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 58

Inputs duplex : Pointer to DDB that contains device context information
maintained by the driver

eHssRegId : Specifies the register holding the value the driver
will retrieve. It can be one of:

• DPX_RX_HSS_CFG_RXD0

• DPX_RX_HSS_CFG_RXD1

• DPX_RX_HSS_CELL_FILTER_CFG_RXD0

• DPX_RX_HSS_CELL_FILTER_CFG_RXD1

• DPX_TX_HSS_CFG

• DPX_ALL_HSS_REGS

Note: The logical-channel base address and address range are
retrieved together. In addition, the driver can retrieve all
configuration registers at once using DPX_ALL_HSS_REGS.

Outputs psHssRegs : Contents of the specified HSS-link control
register(s) output by this function. These contents are valid only if
the function returns DPX_SUCCESS. Further, only those fields of
this structure are valid that have been requested using the input
parameter, eHssRegId .

Return Codes DPX_SUCCESS

DPX_ERR_INVALID_DEVICE (invalid device handle)

DPX_ERR_INVALID_STATE (invalid device state)

DPX_ERR_INVALID_REG_ID (invalid register ID)

4.7.4 duplexHssSetConfig: Modifying HSS-Link Configuration Information

This function sets up or modifies the contents of the specified HSS-link’s
configuration registers. With one call, this function can set the value of individual
configuration registers as well as the entire configuration register set.

Valid States DPX_INIT, DPX_ACTIVE

Side Effects None

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 59

Prototype INT4 duplexHssSetConfig(DUPLEX duplex,
eDPX_HSS_REG eHssRegId, sDPX_HSS_REGS
*psHssRegs)

Inputs duplex : Pointer to DDB that contains device context information
maintained by the driver

eHssRegId : Specifies the register with the value the driver will
write. It can be one of:

• DPX_RX_HSS_CFG_RXD0

• DPX_RX_HSS_CFG_RXD1

• DPX_RX_HSS_CELL_FILTER_CFG_RXD0

• DPX_RX_HSS_CELL_FILTER_CFG_RXD1

• DPX_TX_HSS_CFG

• DPX_ALL_HSS_REGS

Note: The logical channel base address and address range have
to be set together. In addition, the driver can set all configuration
registers at once using DPX_ALL_HSS_REGS.

psHssRegs : Contents of the specified HSS-link control
register(s) to be set. The only fields in this structure that will be
set are those that the driver has requested using eHssRegId .

Outputs None

Return Codes DPX_SUCCESS

DPX_ERR_INVALID_DEVICE (invalid device handle)

DPX_ERR_INVALID_STATE (invalid device state)

DPX_ERR_INVALID_REG_ID (invalid register ID)

4.8 HSS-Link Cell Insertion and Extraction

This section describes the API functions used to insert cells into, and extract cells
from, HSS-links. Their tasks include:

• Transmitting a cell on a specified HSS-link ’s control channel

• Extracting a cell received on a specified HSS-link ’s control channel

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 60

• Returning the contents of the microprocessor extract FIFO ready register

• Enabling the interrupt indication for a cell’s reception

• Installing a callback function that determines the type of cell being extracted

4.8.1 duplexInsertCell: Inserting Cells into HSS Links

This function transmits a cell on the control channel of both the active and standby
HSS links. This function can send messages, which you define, over the HSS links. If
the message is longer than the length of a cell’s payload, then the application should
segment the message into 48 byte cells. Call this function repeatedly until all the
cells that constitute the message have been transmitted.

Optionally, a 32-bit CRC can protect messages. The CRC accumulates each time a
cell belonging to the message is sent. For the last cell of the message (indicated by
the application), the CRC is inserted into the last four bytes of the cell’s payload.

Message interleaving (over different circuits in the same control channel) is allowed.
For CRC-32 protected messages, message interleaving requires the application to
save the intermediate CRC-32 value output by this function, if a cell has to be sent
out on another control channel or another circuit on the same control channel.

Valid States DPX_ACTIVE

Side Effects You should give cell reception higher priority than cell
transmission to prevent extract FIFO overflow. In other words, all
cells of a received message should be extracted before switching
context.

Prototype INT4 duplexInsertCell(DUPLEX duplex,
sDPX_CELL_HDR *psCellHdr, UINT1 *pu1CellPyld,
sDPX_CELL_CTRL *psCtrl)

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 61

Inputs duplex : Pointer to DDB that contains device context information
maintained by the driver

psCellHdr : Pointer to the cell header structure that contains the
two prepend bytes that you define (optional), H1-H4 bytes, and
the H5 (optional) and UDF (optional) bytes. The driver uses the
optional bytes based on the TX HSS configuration register
contents.

pu1CellPyld : Pointer to first byte of cell payload (48
contiguous bytes)

psCtrl->u1CrcFlg : Control flag containing the following bit
vectors:

• Bit 0: Flag for CRC protection flag

• Bit 1: Flag for first cell of a CRC protected message

• Bit 2: Flag for last cell of a CRC protected message

psCtrl->u4Crc32Prev : Used to restore previously saved
CRC-32 value output by this function. Only applicable if bit 0 of
psCtrl->u1CrcFlg is set.

Outputs psCtrl->u4Crc32 : Used to output CRC-32 value after writing
a cell. The driver then passes this value back as an input
parameter (psCtrl->u4Crc32Prev) for the next cell to be
transmitted on the same control channel connection.

Return Codes DPX_SUCCESS

DPX_ERR_INVALID_DEVICE (invalid device handle)

DPX_ERR_INVALID_STATE (invalid device state)

DPX_ERR_CELL_TX_BUSY (cell transmission port busy)

4.8.2 duplexExtractCell: Extracting Cells from HSS Links

This function extracts a cell received on a specified HSS-link ’s control channel. This
function also receives messages, which you define, that can span multiple cells. The
application must call this function once for each cell that constitutes the message.

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 62

If the incoming message contains a CRC-32 field at the end, then the driver can
perform a CRC check over the body of the message. The function also provides the
header information of the cell to the calling function.

Valid States DPX_ACTIVE

Side Effects You should give cell reception a higher priority than cell
transmission to prevent extract FIFO overflow. In other words,
all cells of a received message should be extracted before
switching context.

Prototype INT4 duplexExtractCell(DUPLEX duplex, UINT1
u1HssLnkId, sDPX_CELL_HDR *psCellHdr, UINT1
*pu1CellPyld, sDPX_CELL_CTRL *psCtrl)

Inputs duplex : Pointer to DDB that contains device context
information maintained by the driver

u1HssLnkId : HSS link identifier. Valid identifiers are
DPX_RXD1 and DPX_RXD2.

Outputs psCellHdr : Pointer to the cell header-data received

pu1CellPyld : Pointer to first byte of cell payload 48
contiguous bytes)

psCtrl->u4Crc32 : Used to output CRC-32 value after
reading a cell. The driver then passes this value back as an
input parameter (psCtrl->u4Crc32Prev) for the next cell to
be extracted on the same control channel connection.

psCtrl->u1CrcFlg : This is a control flag. Contains the
following bit vector:

• Bit 0: CRC protection flag

• Bit 1: Flag for first cell of a CRC protected message

• Bit 2: Flag for last cell of a CRC protected message

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 63

Return Codes DPX_SUCCESS

DPX_ERR_INVALID_DEVICE (invalid device handle)

DPX_ERR_INVALID_STATE (invalid device state)

DPX_ERR_INVALID_LNK_ID (invalid link ID)

DPX_ERR_CB_FN_NOT_INSTALLED (callback function is not
installed yet)

DPX_ERR_CELL_RX_CRC (cell reception CRC error)

4.8.3 duplexCheckExtractFifos: Getting Contents of the Extract-FIFO-Ready Register

This function returns the contents of the microprocessor extract-FIFO-ready register.
This function can check if there are any cells to extract from the extract FIFOs.

Valid States DPX_ACTIVE

Side Effects None

Prototype UINT4 duplexCheckExtractFifos(DUPLEX duplex,
UINT1 *pu1CellReady)

Inputs duplex : Pointer to DDB that contains device context
information maintained by the driver

Outputs pu1CellReady: Contains the following bit vector, which
represents the state of each extract FIFO:

• Bit 0:

• If value is 1, then RXD1 has at least one cell ready for
extraction

• If value is 0, then no cells present
• Bit 1:

• If value is 1, then RXD2 has at least one cell ready for
extraction

• If value is 0, then no cells present

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 64

Return Codes DPX_SUCCESS

DPX_ERR_INVALID_DEVICE (invalid device handle)

DPX_ERR_INVALID_STATE (invalid device state)

4.8.4 duplexEnableRxCellInd: Enabling the Received Cell Indicator

This function enables the interrupt indication in the device for the reception of a cell.
The application calls this function after it has responded to a previous indication by
extracting all received cells (using multiple duplexExtractCell calls). The
application task can now re-enable this indication and wait for the arrival of more
cells.

Valid States DPX_ACTIVE

Side Effects None

Prototype INT4 duplexEnableRxCellInd(DUPLEX duplex)

Inputs duplex : Pointer to DDB that contains device context
information maintained by the driver

Outputs None

Return Codes DPX_SUCCESS

DPX_ERR_INVALID_DEVICE (invalid device handle)

DPX_ERR_INVALID_STATE (invalid device state)

4.8.5 duplexInstallCellTypeFn: Installing Callback Functions

This function can install a callback function (which you define) that the driver uses to
determine the type of cell it is extracting. The detector function takes a cell header as
the input argument and returns a cell type byte and the previous CRC-32 value for
the same message of the same logical channel.

Valid States DPX_INIT, DPX_ACTIVE

Side Effects None

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 65

Prototype duplexInstallCellTypeFn(DUPLEX duplex,
DPX_EOM_FN pCellTypeFn)

Inputs duplex : Pointer to DDB that contains device context
information maintained by the driver

pCellTypeFn : Pointer to the EOM detector function. The
prototype of this function is:

• UINT1 pCellTypeFn(UINT1 *pu1Hdr, UINT4
*pu4Crc32Prev)

In the detector function, pu1Hdr is the pointer to the first byte
of the cell header’s eight bytes. pu4Crc32Prev is the
accumulated CRC for the previous cells received for the same
message.

Outputs None

Return Codes DPX_SUCCESS

DPX_ERR_INVALID_DEVICE (invalid device handle)

DPX_ERR_INVALID_STATE (invalid device state)

4.9 BOC Transmission and Reception

This section describes the API functions used to transmit and receive bit-oriented
code (BOC). Their tasks include transmitting the specified BOC on the specified HSS
link, and reading the BOC received on a HSS link

4.9.1 duplexTxBOC: Transmitting BOC

This function transmits the specified BOC on the specified HSS link. In the case of
transmitting a loopback activate-BOC code, the RDIDIS register bit should be set to
logic 1 before the transmission. This prevents a pre-emptive remote-defect-indication
(RDI) code from being sent.

Valid States DPX_ACTIVE

Side Effects None

Prototype INT4 duplexTxBOC(DUPLEX duplex, UINT1
u1HssLnkId, UINT1 u1Code)

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 66

Inputs duplex : Pointer to DDB that contains device context
information maintained by the driver

u1HssLnkId : HSS link identifier. Valid identifiers are
DPX_RXD1 and DPX_RXD2.

u1Code : BOC to be transmitted. Valid BOCs are:

• 000000b (RDI)

• 000001b (loopback activate)

• 000010b (loopback deactivate)

• 000011b (remote reset activate)

• 000100b (remote reset not activate)

• 010001b to 111110b (defined by you)

• 111111b (idle code)

Outputs None

Return Codes DPX_SUCCESS

DPX_ERR_INVALID_DEVICE (invalid device handle)

DPX_ERR_INVALID_STATE (invalid device state)

DPX_ERR_INVALID_LNK_ID (invalid link ID)

DPX_ERR_INVALID_BOC (invalid BOC)

4.9.2 duplexRxBOC: Reading from Received BOC

This function can read BOC received on a HSS link.

Valid States DPX_ACTIVE

Side Effects This function reads from the receive-BOC status register. The
application should call this function inside the
indDuplexRxBOC indication-callback function. This function
clears the status bits (IDLEI and BOCI) in the BOC status
register.

Prototype INT4 duplexRxBOC(DUPLEX duplex, UINT1
u1HssLnkId, UINT1 *pu1Code)

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 67

Inputs duplex : Pointer to DDB that contains device context
information maintained by the driver

u1HssLnkId : HSS link identifier. Valid identifiers are
DPX_RXD1 and DPX_RXD2.

Outputs pu1Code : Pointer to BOC to be received. Valid BOCs are:

• 000000b (RDI)

• 000001b (loopback activate)

• 000010b (loopback deactivate)

• 000011b (remote reset activate)

• 000100b (remote reset deactivate)

• 010001b to 111110b (defined by you)

• 111111b (idle code)

Return Codes DPX_SUCCESS

DPX_ERR_INVALID_DEVICE (invalid device handle)

DPX_ERR_INVALID_STATE (invalid device state)

DPX_ERR_INVALID_LNK_ID (invalid link ID)

DPX_ERR_INVALID_BOC (invalid BOC)

4.9.3 duplexSetAutoRDITx: Transmitting Remote-Defect Indication Code Words

Enables/disables the automatic transmission of an RDI code word on the specified
HSS link.

Valid States DPX_INIT, DPX_ACTIVE

Side Effects None

Prototype INT4 duplexSetAutoRDITx(DUPLEX duplex, UINT1
u1HssLnkId, UINT1 u1DisableFlg)

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 68

Inputs duplex : Pointer to DDB that contains device context
information maintained by the driver

u1HssLnkId : HSS link identifier. Valid identifiers are
DPX_RXD1 and DPX_RXD2.

u1DisableFlg : 1 enables auto transmission of RDI. 0
disables auto transmission of RDI.

Outputs None

Return Codes DPX_SUCCESS

DPX_ERR_INVALID_DEVICE (invalid device handle)

DPX_ERR_INVALID_STATE (invalid device state)

DPX_ERR_INVALID_LNK_ID (invalid link ID)

4.9.4 duplexSciAnyPhyGetConfig: Getting SCI-PHY/Any-PHY Configuration
Information

This function retrieves the contents of the S/UNI-DUPLEX SCI-PHY/Any-PHY
configuration registers. It can retrieve the value of individual configuration registers.
Alternatively, it can retrieve the entire configuration register set with one call.

Valid States DPX_INIT, DPX_ACTIVE

Side Effects None

Prototype INT4 duplexSciAnyPhyGetConfig(DUPLEX duplex,
eDPX_SCI_ANY_PHY_REG eSciAnyPhyRegId,
sDPX_SCI_ANY_PHY_REGS *psSciAnyPhyRegs)

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 69

Inputs duplex : Pointer to DDB that contains device context
information maintained by the driver

eSciAnyPhyRegId : Specifies the register containing the value
to be retrieved. It can be one of:

• DPX_SCI_ANY_PHY_EXT_ADDR_MATCH

• DPX_SCI_ANY_PHY_EXT_ADDR_MASK

• DPX_SCI_ANY_PHY_OUT_ADDR_MATCH

• DPX_SCI_ANY_PHY_INP_CFG_1

• DPX_SCI_ANY_PHY_INP_CFG_2

• DPX_SCI_ANY_PHY_ICA_ENBL_LSB

• DPX_SCI_ANY_PHY_ICA_ENBL_2

• DPX_SCI_ANY_PHY_ICA_ENBL_3

• DPX_SCI_ANY_PHY_ICA_ENBL_MSB

• DPX_SCI_ANY_PHY_OUT_CFG

• DPX_SCI_ANY_PHY_OUT_POLL_RNG

• DPX_ALL_PHY_REGS

Note: All configuration registers can be retrieved at once using
DPX_ALL_PHY_REGS

Outputs psSciAnyPhyRegs : Contents of the specified
SCI-PHY/Any-PHY registers output by this function

These contents are valid only if the function returns
DPX_SUCCESS. Also, the only fields in this structure that are
valid are those that have been requested using the input
parameter, eSciAnyPhyRegId .

Return Codes DPX_SUCCESS

DPX_ERR_INVALID_DEVICE (invalid device handle)

DPX_ERR_INVALID_STATE (invalid device state)

DPX_ERR_INVALID_REG_ID (invalid register ID)

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 70

4.9.5 duplexSciAnyPhySetConfig: Configuring HSS-Links

This function configures and modifies the contents of the specified HSS-link’s
configuration registers. It can set the value of individual configuration registers.
Alternatively, it can set the entire configuration register set with one call.

Valid States DPX_INIT, DPX_ACTIVE

Side Effects None

Prototype INT4 duplexSciAnyPhySetConfig(DUPLEX duplex,
eDPX_SCI_ANY_PHY_REG eSciAnyPhyRegId,
sDPX_SCI_ANY_PHY_REGS *psSciAnyPhyRegs)

Inputs duplex : Pointer to DDB that contains device context
information maintained by the driver.

eSciAnyPhyRegId : Specifies the register containing the value
to be set; can be one of:

• DPX_SCI_ANY_PHY_EXT_ADDR_MATCH

• DPX_SCI_ANY_PHY_EXT_ADDR_MASK

• DPX_SCI_ANY_PHY_OUT_ADDR_MATCH

• DPX_SCI_ANY_PHY_INP_CFG_1

• DPX_SCI_ANY_PHY_INP_CFG_2

• DPX_SCI_ANY_PHY_ICA_ENBL_LSB

• DPX_SCI_ANY_PHY_ICA_ENBL_2

• DPX_SCI_ANY_PHY_ICA_ENBL_3

• DPX_SCI_ANY_PHY_ICA_ENBL_MSB

• DPX_SCI_ANY_PHY_OUT_CFG

• DPX_SCI_ANY_PHY_OUT_POLL_RNG

• DPX_ALL_PHY_REGS

Note: All configuration registers can be set at once using
DPX_ALL_PHY_REGS.

psSciAnyPhyRegs : Contents of the specified
SCI-PHY/Any-PHY registers that this function will set. These
contents are valid only if the function returns DPX_SUCCESS.
Also, only those fields of this structure are valid that have been
requested using the input parameter, eSciAnyPhyRegId .

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 71

Outputs None

Return Codes DPX_SUCCESS

DPX_ERR_INVALID_DEVICE (invalid device handle)

DPX_ERR_INVALID_STATE (invalid device state)

DPX_ERR_INVALID_REG_ID (invalid register ID)

4.10 Clocked Serial-Data Interface Functions

The clocked serial-data interface functions perform the following tasks:

• Reads from transmit and receive serial-channel context bytes

• Writes to transmit and receive serial-channel context bytes

• Enables and disables automatic reset of the HCS error-count register

4.10.1 duplexRxSerChnlReadReg: Reading from Receive Serial-Channel Context
Bytes

This function indirectly reads a receive serial-channel context byte.

Valid States DPX_INIT, DPX_PRESENT

Side Effects None

Prototype INT4 duplexRxSerChnlReadReg(DUPLEX duplex,
UINT1 u1SerChnlId, eDPX_CLK_SER_REG
eClkSerRegId, UINT1 *pu1RegVal)

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 72

Inputs duplex : Pointer to DDB that contains device context
information maintained by the driver

u1SerChnlId : Serial channel identifier (0 through 15)

eClkSerRegId : Specifies the register containing the value
that the function will retrieve. It can be one of the following:

• DPX_CLK_SER_RX_CHNL_CFG

• DPX_CLK_SER_RX_INT_ENBLS

• DPX_CLK_SER_RX_INT_STATUS

• DPX_CLK_SER_RX_HCS_ERR_CNT

• DPX_CLK_SER_LCD_CNT_THRESH

Outputs pu1RegVal : Contents of the specified clocked-bit
serial-interface registers output by this function. These contents
are valid only if the function returns DPX_SUCCESS.

Return Codes DPX_SUCCESS

DPX_ERR_INVALID_DEVICE (invalid device handle)

DPX_ERR_INVALID_STATE (invalid device state)

DPX_ERR_INVALID_CHNL_ID (invalid serial channel ID)

DPX_ERR_INVALID_REG_ID (invalid register ID)

4.10.2 duplexRxSerChnlWriteReg: Writing to Receive Serial-Channel Context Bytes

This function indirectly writes to a receive serial-channel context byte.

Valid States DPX_INIT, DPX_PRESENT

Side Effects None

Prototype INT4 duplexRxSerChnlWriteReg(DUPLEX duplex,
UINT1 u1SerChnlId, eDPX_CLK_SER_REG
eClkSerRegId, UINT1 u1RegVal)

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 73

Inputs duplex : Pointer to DDB that contains device context
information maintained by the driver

u1SerChnlId : Serial channel identifier (0 through 15)

eClkSerRegId : Specifies the register containing the value
that the function will retrieve. It can be one of the following:

• DPX_CLK_SER_RX_CHNL_CFG

• DPX_CLK_SER_RX_INT_ENBLS

• DPX_CLK_SER_LCD_CNT_THRESH

u1RegVal : Contents of the specified clocked-bit
serial-interface register that this function will set

Return Codes DPX_SUCCESS

DPX_ERR_INVALID_DEVICE (invalid device handle)

DPX_ERR_INVALID_STATE (invalid device state)

DPX_ERR_INVALID_CHNL_ID (invalid serial channel ID)

DPX_ERR_INVALID_REG_ID (invalid register ID)

4.10.3 duplexRxSerChnlHCSCntResetEn: Enabling Auto Reset of HCS Error Registers

This function enables or disables automatic reset of the HCS error-count register
when an indirect read is initiated.

Valid States DPX_INIT, DPX_ACTIVE

Side Effects None

Prototype INT4 duplexRxSerChnlHCSCntResetEn(DUPLEX
duplex, UINT1 u1Enable)

Inputs duplex : Pointer to DDB that contains device context
information maintained by the driver

u1Enable : If value is 0, the flag enables auto reset. If the value
is not 0, the flag disables autoreset.

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 74

Return Codes DPX_SUCCESS

DPX_ERR_INVALID_DEVICE (invalid device handle)

DPX_ERR_INVALID_STATE (invalid device state)

4.10.4 duplexTxSerChnlReadReg: Reading from Transmit Serial-Channel Context
Bytes

This function indirectly reads a transmit serial-channel context byte.

Valid States DPX_INIT, DPX_PRESENT

Side Effects None

Prototype INT4 duplexTxSerChnlReadReg(DUPLEX duplex,
UINT1 u1SerChnlId, eDPX_CLK_SER_REG
eClkSerRegId, UINT1 *pu1RegVal)

Inputs duplex : Pointer to DDB that contains device context
information maintained by the driver

u1SerChnlId : Serial channel identifier (0 through 15)

eClkSerRegId : Specifies the register containing the value
that this function will retrieve. Its value can be one of the
following:

• DPX_CLK_SER_TX_DATA

• DPX_CLK_SER_TX_SER_FRM_BIT_THRESH

Outputs pu1RegVal : Contents of the specified clocked-bit
serial-interface register output by this function. These contents
are valid only if the function returns DPX_SUCCESS

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 75

Return Codes DPX_SUCCESS

DPX_ERR_INVALID_DEVICE (invalid device handle)

DPX_ERR_INVALID_STATE (invalid device state)

DPX_ERR_INVALID_CHNL_ID (invalid serial channel ID)

DPX_ERR_INVALID_REG_ID (invalid register ID)

4.10.5 duplexTxSerChnlWriteReg: Writing to Transmit Serial-Channel Context Bytes

This function indirectly writes to a transmit serial-channel context byte.

Valid States DPX_INIT, DPX_PRESENT

Side Effects None

Prototype INT4 duplexTxSerChnlWriteReg(DUPLEX duplex,
UINT1 u1SerChnlId, eDPX_CLK_SER_REG
eClkSerRegId, UINT1 u1RegVal)

Inputs duplex : Pointer to DDB that contains device context
information maintained by the driver

u1SerChnlId : Serial channel identifier (0 through 15)

eClkSerRegId : Specifies the register containing the value
that this function will retrieve. It can be one of the following:

• DPX_CLK_SER_TX_DATA

• DPX_CLK_SER_TX_SER_FRM_BIT_THRESH

u1RegVal : Contents of the specified clocked-bit
serial-interface register that this function will set

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 76

Return Codes DPX_SUCCESS

DPX_ERR_INVALID_DEVICE (invalid device handle)

DPX_ERR_INVALID_STATE (invalid device state)

DPX_ERR_INVALID_CHNL_ID (invalid serial channel ID)

DPX_ERR_INVALID_REG_ID (invalid register ID)

4.11 Statistics Collection

This section describes the API functions used to collect statistics about the device’s
HSS links. Their tasks include:

• Accumulating the received-cell count and header-check sequence (HCS)
cell-error count for a specified HSS link

• Accumulating the transmitted-cell count for a specified HSS link

• Reading all the cell counts (transmit and receive) for all the HSS links of the
specified device

• Retrieving and resetting the statistical counts maintained by the driver

4.11.1 duplexGetHssLnkRxCounts: Accumulating Counts for Received Cells

This function accumulates the counts for received cells and errored HCS cells for a
specified HSS link (RXD1 or RXD2). It triggers an update of the receive HSS
cell-counter registers and the receive-HSS HCS error-count register. It then reads
the contents of these registers and returns the values read to the application. To
maintain a steady count, without overflow, of received cells and HCS cell errors, the
application should call this function at least every 30 seconds.

Valid States DPX_ACTIVE

Side Effects You should not use this function at the same time (in periodic
polling fashion) as duplexGetAllHssLnkCounts because
both functions trigger updates to the receive counters.

Prototype INT4 duplexGetHssLnkRxCounts(DUPLEX duplex,
UINT1 u1HssLnkId, UINT4 *pu4RxCells, UINT4
*pu4HcsErrs)

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 77

Inputs duplex : Pointer to DDB that contains device context
information maintained by the driver

u1HssLnkId : HSS link identifier. Valid identifiers are
DPX_RXD1 and DPX_RXD2.

Outputs pu4RxCells : Count of cells received

pu4HcsErrs : Count of errored HCS-cells received

Return Codes DPX_SUCCESS

DPX_ERR_INVALID_DEVICE (invalid device handle)

DPX_ERR_INVALID_STATE (invalid device state)

DPX_ERR_INVALID_LNK_ID (invalid link ID)

4.11.2 duplexGetHssLnkTxCounts: Accumulating Counts for Transmitted Cells

This function accumulates the counts for transmitted cells for a specified HSS link
(TXD1 or TXD2). It triggers an update of the transmit HSS cell-counter registers. It
then reads the contents of these registers and returns the values read to the
application. To maintain a steady count, without overflow, of transmitted cells, the
application should call this function at least every 30 seconds.

Valid States DPX_ACTIVE

Side Effects You should not use this function at the same time (in periodic
polling fashion) as duplexGetAllHssLnkCounts because
both functions trigger updates to the transmit counters.

Prototype INT4 duplexGetHssLnkTxCounts(DUPLEX duplex,
UINT4 *pu4TxCells)

Inputs duplex : Pointer to DDB that contains device context
information maintained by the driver

Outputs pu4TxCells : Count of cells transmitted

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 78

Return Codes DPX_SUCCESS

DPX_ERR_INVALID_DEVICE (invalid device handle)

DPX_ERR_INVALID_STATE (invalid device state)

4.11.3 duplexGetAllHssCounts: Accumulating Counts for All Cells

This function reads all the cell counts (transmit and receive) for all the serial links of
the specified S/UNI-DUPLEX device. This function triggers an update to the RXD1
and RXD2 receive and transmit counters by writing a dummy value to the load
performance meters register. It then reads the counters of all the serial links and
returns the contents to the calling function.

To maintain a steady count of cells received, cells transmitted, and HCS errored cells
on a per-link basis for all the serial links, and to avoid overflow, the application should
call this function at least every 30 seconds.

Valid States DPX_ACTIVE

Side Effects You should not use this function at the same time (in periodic
polling fashion) as duplexGetHssLnkRxCounts and
duplexGetHssLnkTxCounts because both functions trigger
updates to the same counters.

Prototype INT4 duplexGetAllHssCounts(DUPLEX duplex,
sDPX_HSS_CNTS *psHssCnts)

Inputs duplex : Pointer to DDB that contains device context
information maintained by the driver

Outputs psHssCnts : Contains the RXD1 and RXD2 cells received,
errored received cells, and transmitted cells

Return Codes DPX_SUCCESS

DPX_ERR_INVALID_DEVICE (invalid device handle)

DPX_ERR_INVALID_STATE (invalid device state)

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 79

4.11.4 duplexGetStatisticCounts: Retrieving Driver Statistical Counts

This function retrieves the statistical counts maintained by the driver. It contains the
counts for events and interrupts of the S/UNI-DUPLEX device since the last call to
reset statistic counts.

Valid States All states except DPX_EMPTY

Side Effects None

Prototype INT4 duplexGetStatisticCounts(DUPLEX duplex,
sDPX_STAT_COUNTS *psStatCounts)

Inputs duplex : Pointer to DDB that contains the count information
maintained by the driver

Outputs psStatCounts : Contains statistical counts of events and
interrupts

Return Codes DPX_SUCCESS

DPX_ERR_INVALID_DEVICE (invalid device handle)

4.11.5 duplexResetStatisticCounts: Resetting Driver Statistical Counts

This function resets the statistical counts maintained by the driver.

Valid States All states except DPX_EMPTY

Side Effects None

Prototype INT4 duplexResetStatisticCounts(DUPLEX duplex)

Inputs duplex : Pointer to DDB that contains the count information
maintained by the driver

Outputs None

Return Codes DPX_SUCCESS

DPX_ERR_INVALID_DEVICE (invalid device handle)

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 80

4.12 Indication Callbacks

The DPR uses indication callback functions to notify the application of events in the
S/UNI-DUPLEX device and driver. You must implement these functions to work within
the inter-task communication and scheduling capabilities of your RTOS. Typically, the
callback functions will run in the context of the DPR, not in the context of the
application. Therefore, these functions must be non-blocking. They should use
RTOS-based inter-task notification to pass callback information safely from the DPR
to the application task.

4.12.1 indDuplexNotify: Notifying the Application of Significant Events

This indication function notifies the application about the occurrence of a significant
event in the hardware or the driver software. The duplexDPR function calls this
function. This function should be non-blocking. Typically, the indication function sends
a message to another task with the event identifier and other context information. The
task that receives this message can then process this information according to the
system requirements.

Prototype VOID indDuplexNotify(USR_CTXT usrCtxt,
sDPX_IND_BUF *pIndBuf)

Inputs usrCtxt : Context information (maintained by your system) for
the device

pIndBuf : Information regarding the indication. It consists of an
event identifier that identifies the reported event. Uniquely
supplemental information about the event. The application should
use duplexReturnIndBuf to free the indication context
structure.

Outputs None

Return Codes None

4.12.2 indDuplexRxBOC: Notifying the Application of Received BOC

This indication function notifies the application about the reception of a valid BOC.
The duplexDPR function calls this function. This function should be non-blocking.

Prototype VOID indDuplexRxBOC(USR_CTXT usrCtxt,
sDPX_IND_BUF *pIndBuf)

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 81

Inputs usrCtxt : Context information (maintained by your system) for
the device

pIndBuf : Information regarding the indication. It consists of:

• u1HssLnkId : HSS link that received the BOC.

• u1BOC: BOC received. It can be one of the following:

• 000000b (RDI)
• 000001b (loopback activate)
• 000010b (loopback deactivate)
• 000011b (remote reset activate)
• 000100b (remote reset deactivate)
• 010001b to 111110b (defined by you)
• 111111b (idle code)

The application should use duplexReturnIndBuf to free the
indication context structure.

Outputs None

Return Codes None

4.12.3 indDuplexRxCell: Notifying the Application of Ready Extract-Cell-FIFOs

This indication function notifies the application of the reception of cells in the
microprocessor extract cell FIFOs. The duplexDPR function calls this function. This
function should be non-blocking. Typically, the indication function sends a message to
another task with the event identifier and other context information. The task that
receives this message can then extract the received cells using
duplexCheckExtractFifos and duplexExtractCell .

Prototype VOID indDuplexRxCell(USR_CTXT usrCtxt,
sDPX_IND_BUF *pIndBuf)

Inputs usrCtxt : Context information (maintained by your system) for
the device

pIndBuf : Information regarding the indication. Currently, the
driver does not use it, so the driver passes a null pointer for now.

Outputs None

Return Codes None

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 82

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 83

5 REAL-TIME-OS INTERFACE FUNCTIONS

The driver’s RTOS interface module provides functions and macros that let the driver
use RTOS services. The S/UNI-DUPLEX driver requires the following RTOS
services:

• Memory: Allocate and deallocate

• Interrupts: Install and remove

• Preemption: Enable and disable

The driver may also require the following additional RTOS services depending on
how you customize the code (for example, the ISR, the DPR, and so on). These
services are:

• Timers: Create, delete, start and abort

• Tasks: Spawn and delete

• Message queues: Create and destroy queues, send and receive messages

Figure 8 illustrates the external interfaces defined for the S/UNI-DUPLEX driver.

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 84

Figure 8: Real-Time OS Interface

RTOS

 Function Calls Indication Callbacks

Register Access
Hardware
Interrupts

Service Calls

App lication

S/UNI-DUPLEX Driver

S/UNI-DUPLEX Device

RTOS Interface

5.1 Memory Allocation and Deallocation

This section describes the RTOS interface functions used to allocate and deallocate
memory.

5.1.1 sysDuplexMemAlloc: Allocating Memory

This macro allocates a specified number of bytes.

Prototype #define sysDuplexMemAlloc(nbytes) malloc(nbytes)

Inputs nbytes : Number of bytes to be allocated

Outputs None

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 85

Return Codes Pointer to first byte of allocated memory

NULL pointer (memory allocation failed)

5.1.2 sysDuplexMemFree: Deallocating Memory

This macro deallocates memory allocated by sysDuplexMemAlloc .

Prototype #define sysDuplexMemFree(pu1First)
free(pu1First)

Inputs pu1First : Pointer to first byte of the memory region being
deallocated

Outputs None

Return Codes None

5.2 Buffer Management

This section describes the RTOS interface functions used to manage buffers for the
DPR. Their tasks include getting a buffer for saving the context information for the
indication callbacks, and returning the buffer after the application has received the
context information.

5.2.1 duplexGetIndBuf: Getting DPR Buffers

This function gets a buffer that saves the context information for the indication
callbacks called by the DPR.

Prototype sDPX_IND_BUF *duplexGetIndBuf(VOID)

Inputs None

Outputs None

Return Codes Pointer to indication context buffer

NULL pointer (buffer unavailable)

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 86

5.2.2 duplexReturnIndBuf: Returning DPR Buffers

This function returns the indication context buffer after the DPR has received the
context information.

Prototype VOID duplexReturnIndBuf(sDPX_IND_BUF *pBuf)

Inputs pBuf : Pointer to indication context structure

Outputs None

Return Codes None

5.3 Timer Operations

This section describes the RTOS interface function used to suspend a task for a
specified period.

5.3.1 sysDuplexDelayFn: Delaying Functions

This function suspends execution of the calling function’s task for a specified number
of milliseconds.

Prototype VOID sysDuplexDelayFn(UINT4 u4Msecs)

Inputs u4Msecs : Delay (in milliseconds)

Outputs None

Return Codes None

5.4 Semaphore Operations

This section describes the RTOS interface macros used to manage semaphores.
Their tasks include:

• Creating a new mutual-exclusion semaphore

• Deleting a specified semaphore

• Taking and giving semaphores

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 87

5.4.1 sysDuplexSemCreate: Creating Semaphores

This macro creates a new mutual-exclusion semaphore.

Prototype #define sysDuplexSemCreate() semMCreate()

Inputs None

Outputs None

Return Codes semaphore ID

5.4.2 sysDuplexSemDelete: Deleting Semaphores

This macro deletes a specified semaphore.

Prototype #define sysDuplexSemDelete(semId)
semDelete(semId)

Inputs semaphore ID

Outputs None

Return Codes None

5.4.3 sysDuplexSemTake: Taking Semaphores

This macro takes a semaphore.

Prototype #define sysDuplexSemTake(semId) semTake(semId)

Inputs semaphore ID

Outputs None

Return Codes None

5.4.4 sysDuplexSemGive: Giving Semaphores

This macro gives a semaphore.

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 88

Prototype #define sysDuplexSemGive(semId) semGive(semId)

Inputs semaphore ID

Outputs None

Return Codes None

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 89

6 HARDWARE INTERFACE FUNCTIONS

The S/UNI-DUPLEX hardware interface provides functions and macros that read
from and write to S/UNI-DUPLEX device-registers. The hardware interface also
provides a template for an ISR that the driver calls when the device raises a
hardware interrupt. You must modify this function based on the interrupt configuration
of your system.

Figure 9 illustrates the external interfaces defined for the S/UNI-DUPLEX driver.

Figure 9: Hardware Interface

RTOS

 Function Calls Indication Callbacks

Register
Access

Hardware
Interrupts

Service Calls

App lication

S/UNI-DUPLEX Driver

S/UNI-DUPLEX Device

Hardware
Interface

6.1 Device Register Access

This section describes the hardware interface functions used to read from and write
to S/UNI-DUPLEX device registers. Their tasks include reading and writing the
contents of a specific address. It also includes getting the base address of the new
device so that the driver can access the device register map to control it.

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 90

6.1.1 sysDuplexRawRead: Reading from Register Address Locations

This low-level system-specific macro reads the contents of a specific
register-address location. You should define this to reflect your system’s addressing
logic.

Prototype #define sysDuplexRawRead(addr, val)

Inputs addr : Address location to be read

Outputs val : Value read

6.1.2 sysDuplexRawWrite: Writing to Register Address Locations

This low-level system-specific macro writes the contents of a specific
register-address location. You should define this macro to reflect your system’s
addressing logic.

Prototype #define sysDuplexRawWrite(addr, val)

Inputs addr : Address location to write

val : Value to be written

Outputs None

6.1.3 sysDuplexDeviceDetect: Getting Device Base Addresses

This function uses user context information to detect new S/UNI-DUPLEX devices.
The duplexAdd API function calls it. This function’s implementation is system
specific.

Prototype INT4 sysDuplexDeviceDetect(DPX_USR_CTXT usrCtxt,
VOID **ppSysInfo, UINT4 *pu4BaseAddr)

Inputs usrCtxt : Context information (maintained by your system) for
the device

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 91

Outputs pu4BaseAddr : Base address of device

ppSysInfo : Pointer to a system information buffer, which
contains system specific information

Return Codes DPX_SUCCESS

DPX_DEVICE_NOT_DETECTED

6.2 Interrupt Servicing

This section describes the hardware interface functions used to provide hardware
interrupt servicing. They install and remove the interrupt handlers and DPRs for the
S/UNI-DUPLEX devices. These functions depend on whether you implement the
driver in interrupt mode or polling mode. In interrupt mode, their tasks include:

• Installing and removing the system-dependent interrupt-handler function
(sysDuplexIntHandler) and the DPR function (sysDuplexDPRTask),
creating a communication channel between the two, and adding the device to a
list of devices for which interrupts will be serviced

• Removing the specified device from the list of devices for which interrupt
processing will be done

• Calling duplexISR for each device for which interrupt processing is enabled

• Retrieving interrupt status information saved for it by the
sysDuplexIntHandler function, and calling the duplexDPR function for the
appropriate device

In polling mode, these functions’ tasks include:

• Spawning and removing the sysDuplexDPRTask function

• Adding the device to a list of devices that need polling

• Polling the S/UNI-DUPLEX device for interrupt status information and processing
the interrupt status

The S/UNI-DUPLEX driver provides a function called duplexISR that checks if
there are any valid interrupt conditions present for a specified device. This function
can be used by a system-specific interrupt-handler function to service interrupts
raised by S/UNI-DUPLEX devices.

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 92

The low-level interrupt handler function that traps the hardware interrupt and calls
duplexISR is system and RTOS dependent. Therefore, it is outside the scope of the
driver. As a reference, this manual provides an example implementation of such an
interrupt handler (see sysDuplexIntHandler) as well as installation and removal
functions (see sysDuplexIntInstallHandler and
sysDuplexIntRemoveHandler). You can customize these example
implementations as per your specific requirements.

6.2.1 duplexISR: Registering Interrupt Statuses

This function reads the top-level interrupt-status registers of the interrupting device. If
there are any bits set in these registers, this function returns a value greater than
zero. If there are no bits set, this function returns a zero. This function is invoked by
the system-specific interrupt-handler function, sysDuplexIntHandler .

Note: In polling mode, the driver does not use this function.

Valid States DPX_ACTIVE

Side Effects If the function returns with a non-zero value (meaning interrupt
conditions have been detected), then all device interrupts are
disabled.

Prototype UINT4 duplexISR(DUPLEX duplex)

Inputs duplex : Pointer to DDB that contains device context information
maintained by the driver

Outputs None

Return Codes = 0 (no valid interrupt conditions detected)

> 0 (at least one valid interrupt condition detected)

6.2.2 duplexDPR: Processing Interrupts

This function performs the following tasks:

• Reads the device interrupt-status registers

• Clears the interrupt conditions

• Invokes user-defined callback functions that perform system-specific processing
based on the interrupt conditions detected

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 93

The system-specific DPR-task function, sysDuplexDPRTask , invokes this function.

Valid States DPX_ACTIVE

Side Effects Enables device interrupts after processing all the existing interrupt
conditions

Prototype VOID duplexDPR(DUPLEX duplex)

Inputs duplex : Pointer to DDB that contains device context information
maintained by the driver

Outputs None

Return Codes None

6.2.3 sysDuplexIntInstallHandler: Installing Interrupt Service Functions

In interrupt mode, this function installs sysDuplexIntHandler in the processor
vector table, spawns the sysDuplexDPRTask function as a task, and creates a
communication channel (for example, a message queue) between the two. In
addition, it adds the S/UNI-DUPLEX device to a list of devices that need interrupt
servicing.

In polling mode, this function spawns the sysDuplexDPRTask function. This
function periodically polls the device for interrupts and services the interrupts. It also
adds the S/UNI-DUPLEX device to a list of devices that need polling services.

Prototype INT4 sysDuplexIntInstallHandler(DUPLEX duplex)

Inputs duplex : Pointer to device context information

Outputs None

Return Codes DPX_SUCCESS

DPX_ERR_INT_ALREADY

DPX_ERR_INT_INSTALL

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 94

6.2.4 sysDuplexIntRemoveHandler: Removing Interrupt Service Functions

In interrupt mode, this function removes the specified device from the list of devices
that need interrupt processing. If this is the last active device, the function deletes the
sysDuplexDPRTask and associated message queue. It also removes the
sysDuplexIntHandler function from the processor’s interrupt-vector table.

In polling mode, this function removes the specified device from the list of devices
that need polling services. If this is the last active device, this function deletes
sysDuplexDPRTask .

Prototype VOID sysDuplexIntRemoveHandler(DUPLEX
duplex)

Inputs duplex : Pointer to device context information

Outputs None

Return Codes None

6.2.5 sysDuplexIntHandler: Calling duplexISR

In interrupt mode, this function calls duplexISR for each device with interrupt
processing enabled. The driver calls this function when one or more S/UNI-DUPLEX
devices interrupt the microprocessor. If duplexISR detects at least one valid
pending interrupt condition, then this function queues the interrupt context
information for later processing by sysDuplexDPRTask .

In polling mode, this function is not used.

Prototype sysDuplexIntHandler (INT4 Irq)

Inputs Irq : IRQ number of interrupt

Outputs None

Return Codes None

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 95

6.2.6 sysDuplexDPRTask: Calling duplexDPR

In interrupt mode, the driver spawns this function as a separate task within the
RTOS. It retrieves interrupt status information queued for it by the
sysDuplexIntHandler function and calls the duplexDPR function for the
appropriate device.

In polling mode, the driver spawns this function as a separate task within the RTOS.
It periodically calls the duplexDPR function for each active device.

Prototype VOID sysDuplexDPRTask(VOID)

Inputs None

Outputs None

Return Codes None

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 96

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 97

7 PORTING DRIVERS

This section outlines how to port the S/UNI-DUPLEX device driver to your hardware
and OS platform.

Note: Because each platform and application is unique, this manual can only offer
guidelines for porting the S/UNI-DUPLEX driver.

7.1 Driver Source Files

The C source files listed in Figure 7-1 contain the code for the S/UNI-DUPLEX driver.
You may need to modify the code or develop additional code. The code is in the form
of constants, macros, and functions. For the ease of porting, the code is grouped into
source files (src) and include files (inc). The src files contain the functions and the
inc files contain the constants and macros.

Figure 10: Driver Source Files

dpxdrv src

inc

Makefile

dpx_hw.c (contains hardware interface functions)

dpx.c (contains driver internal functions)

dpx_api.c (contains al l API functions)

dpx_rtos.c (contains RTOS interface functions)

dpx_test.c (contains sample driver cal lback functions and
test code)

dpx_hw.h (contains device-interface macro and constant definit ions)

dpx.h (contains device register-address and bit-mask definit ions)

dpx_api.h (contains data-structure definit ions and prototypes)

dpx_rtos.h (contains RTOS-interface macro and constant definit ions)

dpx_err.h (contains driver error codes)

dpx_test.h (contains data structure definit ions and protot ypes of
test code)

7.2 Driver Porting Procedures

The following steps summarize how to port the S/UNI-DUPLEX driver to your
platform. The following sections describe these steps in more detail.

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 98

Note: Because each platform and application is unique, this manual can only offer
guidelines for porting the S/UNI-DUPLEX driver.

To port the S/UNI-DUPLEX driver to your platform:

1. Port the driver’s OS extensions (page 98):

• Data types

• OS specific services

• Utilities and interrupt services that use OS specific services

2. Port the driver to your hardware platform (page 100):

• Port the device detection function.

• Port low-level device read-and-write macros.

• Define hardware system-configuration constants.

3. Port the driver’s application-specific elements (page 102):

• Define the task-related constants.

• Code the callback functions.

4. Build the driver (page 103).

7.2.1 Porting Driver OS Extensions

The OS extensions encapsulate all OS specific services and data types used by the
driver. The dpx_rtos.h file contains data types and compiler-specific data-type
definitions. It also contains macros for OS specific services used by the OS
extensions. These OS extensions include:

• Task management

• Message queues

• Timers

• Events

• Semaphores

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 99

• Memory Management

In addition, you may need to modify functions that use OS specific services, such as
utility and interrupt-event handling functions. The dpx_rtos.c file contains the utility
and interrupt-event handler functions that use OS specific services.

To port the driver’s OS extensions:

1. Modify the data types in dpx_rtos.h . The number after the type identifies the
data-type size. For example, UINT4 defines a 4-byte (32-bit) unsigned integer.
Substitute the compiler types that yield the desired types as defined in this file.

2. Modify the OS specific services in dpx_rtos.h . Redefine the following macros
to the corresponding system calls that your target system supports:

Service Type Macro Name Description

sysDuplexMemAlloc Allocates the memory block

sysDuplexMemFree Frees the memory block

Memory

sysDuplexMemCopy Copies the memory block from
src to dest

sysDuplexSemCreate Creates the mutually exclusive
semaphore

sysDuplexSemDelete Frees the mutually exclusive
semaphore

sysDuplexSemGive relinquishes the mutually
exclusive semaphore

Semaphore

sysDuplexSemTake Gets the mutually exclusive
semaphore

3. Modify the utilities and interrupt services that use OS specific services in the
dpx_rtos.c . The dpx_rtos.c file contains the utility and interrupt-event
handler functions that use OS specific services. Refer to the function headers in
this file for a detailed description of each of the functions listed below:

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 100

Service Type Function Name Description

sysDuplexMemSet Sets each character in
the memory buffer

duplexGetIndBuf Gets a block of
memory for the
indication buffer

Memory

duplexReturnIndBuf Frees the indication
buffer

Timer sysDuplexDelayFn Sets the task
execution delay in
milliseconds

sysDuplexIntInstallHandler Installs the interrupt
handler for the OS

sysDuplexIntRemoveHandler Removes the interrupt
handler from the OS

sysDuplexIntHandler Interrupt handler for
the S/UNI-DUPLEX
device

Interrupt

sysDuplexDPRTask Deferred
interrupt-processing
routine (DPR)

7.2.2 Porting Drivers to Hardware Platforms

This section describes how to modify the S/UNI-DUPLEX driver for your hardware
platform.

Before you build the driver, ensure that you port the driver’s OS extensions (page
98).

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 101

To port the driver to your hardware platform:

1. Modify the device detection function in the dpx_hw.c file. The function
sysDuplexDeviceDetect is implemented for a PCI platform. Modify it to
reflect your specific hardware interface. Its purpose is to detect a S/UNI-DUPLEX
device based on a user-context input parameter. It returns two output
parameters:

• The base address of the S/UNI-DUPLEX device

• A pointer to the system-specific configuration information

2. Modify the low-level device read/write macros in the dpx_hw.h file. You may
need to modify the raw read/write access macros (sysDuplexRawRead and
sysDuplexRawWrite) to reflect your system’s addressing logic.

3. Define the hardware system-configuration constants in the dpx_hw.h file. Modify
the following constants to reflect your system’s hardware configuration:

#define Description Default

DPX_MEM_ADDR_RANGE The assigned address memory
range for each S/UNI-DUPLEX
device. Your system’s memory map
determines it.

0x800

DPX_ADAPTER_MAX_UNITS The maximum number of
S/UNI-DUPLEX cards allowed in
the system

Note: The DSLAM architecture
allows up to 16 S/UNI-DUPLEX
cards.

7

DPX_ADAPTER_MAX_DEVS The maximum number of
S/UNI-DUPLEX devices on each
card

1

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 102

7.2.3 Porting Driver Application-Specific Elements

Application specific elements are configuration constants used by the API for
developing an application. This section describes how to modify the application
specific elements in the S/UNI-DUPLEX driver.

Before you port the driver’s application-specific elements, ensure that you:

1. Port the driver’s OS extensions (page 98).

2. Port the driver to your hardware platform (page 100).

To port the driver’s application-specific elements:

1. Define the following driver task-related constants for your OS-specific services in
file dpx_rtos.h :

#define Description Default

DPX_DPR_TASK_PRIORITY Deferred Task (DPR) task priority 85

DPX_DPR_TASK_STACK_SZ DPR task stack size, in bytes 4096

DPX_POLLING_DELAY Constant used in polling task
mode, this constant defines the
interval time in millisecond
between each polling action

10

DPX_TASK_SHUTDOWN_DELAYDelay time in millisecond. When
clearing the DPR loop active flag
in the DPR task, this delay is
used to gracefully shutdown the
DPR task before deleting it.

10

DPX_MAX_DPR_MSGS The queue message depth of the
queue used for pass interrupt
context between the ISR task
and DPR task

10

DPX_MAX_IND_BUFSZ Maximum indication buffer size in
bytes

53

DPX_MAX_NUM_DEVS The maximum number of
S/UNI-DUPLEX devices in the
system (from 1 to 128)

7

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 103

2. Code the callback functions according to your application. There are four sample
callback functions in the dpx_test.c file. You can use these callback functions
or you can customize them before using the driver. The driver will call these
callback functions when an event occurs on the device. These functions must
conform to the following prototypes:

• VOID indDuplexNotify(DPX_USR_CTXT usrCtxt, sDPX_IND_BUF
*psIndCtxt)

• VOID indDuplexRxBOC(DPX_USR_CTXT usrCtxt, sDPX_IND_BUF
*psIndCtxt)

• VOID indDuplexCell(DPX_USR_CTXT usrCtxt, sDPX_IND_BUF
*psIndCtxt)

• UINT1 pCellTypeFn(UINT1 *pu1Hdr, UINT4 *pu4Crc32Prev)

7.2.4 Building Drivers

This section describes how to build the S/UNI-DUPLEX driver.

Before you build the driver, ensure that you:

1. Port the driver’s OS extensions (page 98).

2. Port the driver to your hardware platform (page 100).

3. Port the driver’s application-specific elements (page 102).

To build the driver:

1. Modify the makefile’s compile-switch flag DPX_CSW_INTERRUPT_MODE. Set it to
one for interrupt mode or zero for polling mode.

2. Set the makefile’s compile-switch flag CSW_PV_FLAG to zero. This disables the
test code specific to product verification.

3. Ensure that the directory variable names in the makefile reflect your actual driver
and directory names.

4. Compile the source files and build the S/UNI-DUPLEX API driver library using
your make utility.

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 104

5. Link the S/UNI-DUPLEX API driver library to your application code.

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 105

APPENDIX: CODING CONVENTIONS

This section describes the coding and naming conventions used in the
implementation of the driver software. This section also describes the variable types.

Definition of Variable Types

The following table describes the variable types used by the S/UNI-DUPLEX driver.

Table 16: Definition of Variable Types

Type Description

UINT1 unsigned integer, 1 byte

UINT2 unsigned integer, 2 bytes

UINT4 unsigned integer, 4 bytes

INT1 signed integer, 1 byte

INT2 signed integer, 2 bytes

INT4 signed integer, 4 bytes

VOID void

DPX_USR_CTXT void *, pointer to user maintained device context

DUPLEX void *, pointer to driver maintained device context

Naming Conventions

The names for variables, functions, and macros (but not constants) include prefixes
that indicate their type. Variable, function, and macro names that contain multiple
words have the first letter of each word capitalized.

Variables

The following table describes the prefixes used for the driver’s variables.

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 106

Table 17: Variable Naming Conventions

Variable Type Prefix Example

UINT1

UINT2

UINT4

u1

u2

u4

u1Flag

u2Code

u4Val

INT1

INT2

INT4

i1

i2

i4

i1Flag

i2Code

i4Val

Structure Variable s sCellHdr

Enumerated Type e eHssRegId

Pointers p pu1Flag

pi4Val

psCellHdr

peHssRegId

Pointer to a Pointer pp ppu1Flag

ppi4Val

ppsCellHdr

ppeHssRegId

Functions and Macros

The following table describes the prefixes used for the driver’s functions and macros.

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 107

Table 18: Function and Macro Naming Conventions

Function Type Prefix Example Name

API Functions duplex duplexAdd

Indication Functions indDuplex indDuplexRxCell

System-Specific Functions and
Macros

sysDuplex sysDuplexIntHandler

Definable Constants

You can define some constants using the “#define ” command. These constants
have names that are composed of all uppercase letters with underscores separating
multiple words. An example is DPX_NUM_HSS_LNKS.

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 108

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 109

ACRONYMS

API: Application programming interface

DDB: Device data block

BOC: Bit oriented code

DPR: Deferred interrupt-processing routine

GDD: Global driver database

HCS: Header check sequence

HSS link: High-speed serial link

ISR: Interrupt service routine

RTOS: Real-time operating system

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 110

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 111

INDEX

A
Accessing Registers, 89
Accumulating Counts, 76, 77, 78
Acronyms, 109
Activating Devices, 52
Adding Devices, 45
addr, 90
Addresses, 90
Allocating Memory, 84
API Module, 17
Application Interface Functions, 43
Architecture, 16, 17
Auto Reset, 73

B - C
Base Addresses, 90
BOC, 15, 43, 65, 66, 67
Buffers, 85, 86
Building Drivers, 103
Callback Functions, 64
Calling duplexDPR, 25, 95
Calling duplexISR, 24, 91, 94
Cell Data Structures, 29
Cell Extraction, 22, 23, 59
Cell Insertion, 59, 60
Cell-Control Data Structure, 29
Cell-Header Data Structure, 29
CELLXFERRE, 37
Clocked Serial-Data Interface Functions, 71
Clocks, 55
Coding Conventions, 105
Collecting Statistics, 16, 76
Configuration Information, 57, 58, 68
Configuring HSS Links, 70
Contents of Extract-FIFO-Ready Registers, 63
Count Structures, 38
Count_Clock_Lock_Fail, 39
Count_Extract_Cell_CRC_Error, 39
Count_Extract_Cells, 41
Count_Interrupts, 41
Count_Invalid_SOC_Sequence, 39
Count_Micro_Insert_Fifo_Full, 39
Count_Micro_Insert_Fifo_Ready, 39
Count_Phy_Input_Cell_Xfered, 39
Count_Phy_Input_Parity, 39

Count_Phy_Output_Error, 39
Count_Rx_BOCs, 41
Count_Rx_Lc_Fifo_Overflow, 39
Count_RxHss_Active_Bit, 40
Count_RxHss_Count_Overflow, 41
Count_RxHss_Count_Updated, 41
Count_RxHss_Extract_Fifo, 40
Count_RxHss_HCS_Error, 41
Count_RxHss_In_Delin, 40
Count_RxHss_In_Sync, 41
Count_RxHss_Loss_Of_Signal, 40
Count_RxHss_No_Active_Bit, 40
Count_RxHss_Out_Of_Delin, 40
Count_RxHss_Out_Of_Sync, 41
Count_RxHss_Signal_Detected, 40
Count_RxSerChnl_Fifo_Overflow, 40
Count_RxSerChnl_HCS_Error, 40
Count_RxSerChnl_In_Delin, 39
Count_RxSerChnl_in_Sync, 40
Count_RxSerChnl_Out_Of_Delin, 39
Count_RxSerChnl_Out_Of_Sync, 40
Count_Tx_Hss_Count_Overflow, 39
Count_Tx_Hss_Count_Updated, 39
Count_Tx_Lc_Fifo_Overflow, 39
Counts, 38, 39
Counts for All Cells, 78
Counts for Received Cells, 76
Counts for Transmitted Cells, 77
Creating Semaphores, 87
CSW_PV_FLAG, 103

D
Data Structures, 29
DDBs, 33, 34
Deactivating Devices, 52
Deallocating Memory, 85
Deferred-Processing Routine Module, 19
Delaying Functions, 86
Deleting Devices, 45, 47
Deleting Semaphores, 87
dest, 99
Device Activation, 52
Device Addition, 45
Device Data Block, 18, 34
Device Deactivation, 52
Device Deletion, 45

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 112

Device Diagnostics, 15, 53
Device Initialization, 15, 21, 22, 49
Device Interface Functions, 89
Device Re-initialization, 21, 22
Device Reset, 45
Device Shutdown, 21, 22
Device-Configuration Data Structures, 30
Device-Context Data Structures, 33
Diagnosing Devices, 15, 53
Diagnostic or Line Loopback, 54
Disabling Diagnostic or Line Loopback, 54
DPR, 19
DPR Buffers, 85, 86
DPX_ADAPTER_MAX_DEVS, 101
DPX_ADAPTER_MAX_UNITS, 101
DPX_ALL_HSS_REGS, 58, 59
DPX_ALL_PHY_REGS, 69, 70
DPX_CB_NOTIFY, 51
DPX_CB_RX_BOC, 51
DPX_CB_RX_CELL, 51
DPX_CELLTYPE_FN, 31, 36
DPX_CLK_BIT_SER, 35
DPX_CLK_SER_LCD_CNT_THRESH, 72, 73
DPX_CLK_SER_RX_CHNL_CFG, 72, 73
DPX_CLK_SER_RX_HCS_ERR_CNT, 72
DPX_CLK_SER_RX_INT_ENBLS, 72, 73
DPX_CLK_SER_RX_INT_STATUS, 72
DPX_CLK_SER_TX_DATA, 74, 75
DPX_CLK_SER_TX_SER_FRM_BIT_THRESH,

74, 75
DPX_CSW_INTERRUPT_MODE, 103
DPX_DEVICE_NOT_DETECTED, 91
DPX_DIAG_LPBK, 54
DPX_DPR_TASK_PRIORITY, 102
DPX_DPR_TASK_STACK_SZ, 102
DPX_EMPTY, 35, 46, 47, 54, 55, 79
DPX_EOM_FN, 65
DPX_ERR_CB_FN_NOT_INSTALLED, 63
DPX_ERR_CELL_RX_CRC, 63
DPX_ERR_CELL_TX_BUSY, 61
DPX_ERR_DEV_ID_TYPE, 46
DPX_ERR_DEV_NOT_DETECTED, 46
DPX_ERR_EXCEED_REG_RANGE, 48, 49
DPX_ERR_INDIRECT_CHANNEL_BUSY, 50
DPX_ERR_INT_ALREADY, 93
DPX_ERR_INT_INSTALL, 93
DPX_ERR_INVALID_BOC, 66, 67
DPX_ERR_INVALID_CB_TYPE, 51, 52
DPX_ERR_INVALID_CHNL_ID, 72, 73, 75, 76

DPX_ERR_INVALID_FLAG, 55
DPX_ERR_INVALID_HSS_ID, 55
DPX_ERR_INVALID_INIT_VECTOR, 50
DPX_ERR_INVALID_LNK_ID, 63, 66, 67, 68, 77
DPX_ERR_INVALID_LPBK_TYPE, 55
DPX_ERR_MEM_ALLOC, 45, 46
DPX_ERR_MODULE_ALREADY_INIT, 45
DPX_FAILURE, 54
DPX_IND_CB_FN, 31, 35, 36, 50
DPX_LINE_LPBK, 54
DPX_LPBK_RESET, 54
DPX_LPBK_SET, 54
DPX_MAX_DPR_MSGS, 102
DPX_MAX_IND_BUFSZ, 102
DPX_MAX_NUM_DEVS, 34, 38, 102
DPX_MEM_ADDR_RANGE, 101
DPX_NUM_HSS_LNKS, 107
DPX_POLLING_DELAY, 102
DPX_RX_HSS_CELL_FILTER_CFG_RXD, 58,

59
DPX_RX_HSS_CFG_RXD, 58, 59
DPX_RX_HSS_LNK_SELECT_AUTO, 56, 57
DPX_RX_HSS_LNK_SELECT_RXD, 56, 57
DPX_RXD, 54, 62, 66, 67, 68, 77
DPX_SCI_ANY_PHY_EXT_ADDR_MASK, 69,

70
DPX_SCI_ANY_PHY_EXT_ADDR_MATCH, 69,

70
DPX_SCI_ANY_PHY_ICA_ENBL_, 69, 70
DPX_SCI_ANY_PHY_ICA_ENBL_LSB, 69, 70
DPX_SCI_ANY_PHY_ICA_ENBL_MSB, 69, 70
DPX_SCI_ANY_PHY_INP_CFG_, 69, 70
DPX_SCI_ANY_PHY_OUT_ADDR_MATCH,

69, 70
DPX_SCI_ANY_PHY_OUT_CFG, 69, 70
DPX_SCI_ANY_PHY_OUT_POLL_RNG, 69, 70
DPX_SCI_ANY_SLAVE, 35
DPX_SCI_MASTER, 35
DPX_SEM_ID, 36
DPX_TASK_SHUTDOWN_DELAY, 102
DPX_TX_HSS_CFG, 58, 59
DPX_USR_CTXT, 34, 46, 90, 103, 105
Driver Data Structures, 29
Driver Functions and Features, 15
Driver Hardware-Interface Module, 18
Driver Initialization, 44
Driver Library Module, 18
Driver Shutdown, 44, 45
Driver Software States, 19, 20

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 113

Driver Source Files, 97
DSLAM, 101
duplexActivate, 52
duplexAdd, 45, 46, 90, 107
duplexCheckExtractFifos, 63, 81
duplexDeactivate, 52, 53
duplexDelete, 25, 43, 47, 48
duplexDPR, 19, 23, 25, 26, 43, 49, 50, 51, 80,

81, 91, 92, 93, 95
duplexEnableRxCellInd, 64
duplexExtractCell, 61, 62, 64, 81
duplexGetAllHssCounts, 78
duplexGetAllHssLnkCounts, 76, 77
duplexGetClockStatus, 55
duplexGetHssLnkRxCounts, 76, 78
duplexGetHssLnkTxCounts, 77, 78
duplexGetIndBuf, 85, 100
duplexGetStatisticCounts, 79
duplexHssActiveLnkGetCfg, 56
duplexHssActiveLnkSetCfg, 57
duplexHssGetConfig, 57
duplexHssSetConfig, 58, 59
duplexInit, 49, 50
duplexInsertCell, 60
duplexInstallCellTypeFn, 64, 65
duplexInstallIndFn, 50
duplexISR, 19, 23, 24, 25, 26, 91, 92, 94
duplexLoopback, 54
duplexModuleInit, 44
duplexModuleShutdown, 45
duplexRead, 48
duplexRegisterTest, 53
duplexRemoteReset, 47
duplexRemoveIndFn, 51
duplexReset, 46, 47
duplexResetStatisticCounts, 79
duplexReturnIndBuf, 80, 81, 86, 100
duplexRxBOC, 66
duplexRxSerChnlHCSCntResetEn, 73
duplexRxSerChnlReadReg, 71
duplexRxSerChnlWriteReg, 72
duplexSciAnyPhyGetConfig, 68
duplexSciAnyPhySetConfig, 70
duplexSetAutoRDITx, 67
duplexTxBOC, 65
duplexTxSerChnlReadReg, 74
duplexTxSerChnlWriteReg, 75
duplexWrite, 49

E
eCbType, 50, 51
eClkSerRegId, 71, 72, 73, 74, 75
eDevMode, 35
eDevState, 35
eDPX_CB_TYPE, 50, 51
eDPX_CLK_SER_REG, 71, 72, 74, 75
eDPX_HSS_REG, 57, 59
eDPX_MODE, 35
eDPX_SCI_ANY_PHY_REG, 68, 70
eDPX_STATE, 35
eHSS_LNK_SEL, 56, 57
eHssRegId, 57, 58, 59, 106
eLnkSel, 57
Enabling Auto Reset of HCS Error Registers, 73
Enabling Diagnostic or Line Loopback, 54
Enabling Received Cell Indicators, 64
Error Registers, 73
errored, 16, 76, 77, 78
eSciAnyPhyRegId, 68, 69, 70
Events, 80
Extract-FIFO-Ready Register, 63
Extracting Cells, 22, 23, 61

F - G
FIFOs, 16, 31, 36, 63, 81
Files, 97, 103
Flow Processing, 20
FOVRE, 37
Functions and Features, 15
GDD, 33, 44, 45, 109
Getting Contents of Extract-FIFO-Ready

Registers, 63
Getting Device Base Addresses, 90
Getting DPR Buffers, 85
Getting HSS-Link Configuration Information, 57
Getting HSS-Link Selection Method Information,

56
Getting SCI-PHY/Any-PHY Configuration

Information, 68
Giving Semaphores, 87
Global Driver-Database Structure, 33

H - K
Hardware Interface, 18, 89
HCS, 38, 71, 73, 76, 78, 109
HCSPASS, 33
HSS Counts, 38
HSS Link Cell Extraction, 59

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 114

HSS Link Cell Insertion, 59
HSS Link Configuration, 15, 56, 57, 58
HSS Link Selection, 56
HSS Links, 57, 60, 61, 70
IDLEI, 66
IFCLK, 55
inc, 13, 97
indDuplex, 107
indDuplexCell, 103
indDuplexNotify, 80, 103
indDuplexRxBOC, 66, 80, 103
indDuplexRxCell, 81, 107
Indication Callbacks, 16, 50, 51, 80
indNotify, 31, 35
indRxBOC, 31, 36
indRxCell, 31, 36
Init, 20
Initialization, 44
Initialization Data Structure, 30
Initializing Devices, 15, 21, 22, 49
Initializing Driver Modules, 44
Inserting Cells into HSS Links, 60
Installing Callback Functions, 64
Installing Indication Callback Functions, 50
Installing Interrupt Service Functions, 93
Interrupt Data Structures, 36
Interrupt Processing, 92
Interrupt Service Functions, 93, 94
Interrupt Servicing, 16, 23, 91
Interrupt Statuses, 92
Interrupt-Context Data Structure, 37
Interrupt-Enable Data Structure, 36
Interrupt-Service Routine Module, 19
IRQ, 34, 94
ISR, 16, 23, 36, 91
ISR Data Structure, 36
ISR Module, 19

L - M
Library Module, 18
Line Loopback, 54
lockId, 36
loopback, 15, 53, 54, 55, 65, 66, 67, 81
LSB, 32
Make Files, 103
malloc, 84
Memory, 84, 85
Modifying HSS-Link Configuration Information,

58

Monitoring Device Clocks, 55
MSB, 32

N - Q
nbytes, 84
Notifying Applications, 80, 81
OFCLK, 55
Other Devices, 47
pBuf, 86
pCbFn, 50, 51
pCellTypeFn, 31, 36, 65, 103
PCI, 34, 101
pDdb, 34
pDuplex, 46
peHssRegId, 106
peLnkSel, 56
pIndBuf, 80, 81
Polling Servicing, 26
Porting Application-Specific Elements, 102
Porting Drivers, 97, 100
Porting Drivers to Hardware Platforms, 100
Porting OS Extensions, 98
Porting Procedures, 97
Porting Quick Start, 13
ppeHssRegId, 106
ppsCellHdr, 106
ppSysInfo, 90, 91
Processing Flows, 20
Processing Interrupts, 92
psCellHdr, 60, 61, 62, 106
psCtrl, 60, 61, 62
psHssCnts, 78
psHssRegs, 57, 58, 59
psIndCtxt, 103
psSciAnyPhyRegs, 68, 69, 70
psStatCounts, 79
pSysInfo, 34

R
RDI, 65, 66, 67, 68, 81
RDIDIS, 65
Reading from Receive Serial-Channel Context

Bytes, 71
Reading from Received BOC, 66
Reading from Register Address Locations, 90
Reading from Registers, 48
Reading from Transmit Serial-Channel Context

Bytes, 74
Ready Extract-Cell-FIFOs, 81

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 115

Receive Serial-Channel Context Bytes, 71, 72
Received BOC, 66, 80
Received Cell Indicator, 64
Received Cells, 76
REFCLK, 55
Register Access, 53, 89
Register Address Locations, 90
Register Data Structure, 31
Registering Interrupt Statuses, 92
Registers, 48, 49, 73
Re-initializing Devices, 21, 22
Remote Defect Indications, 67
Removing Indication Callback Functions, 51
Removing Interrupt Service Functions, 94
Resetting Devices, 45, 46
Resetting Other Devices, 47
Resetting Statistical Counts, 79
Retrieving Statistical Counts, 79
Returning DPR Buffers, 86
ROOLE, 37
ROOLV, 37
RSTOB, 47
RTOS, 25
RTOS Interface, 18, 83

S
sCellHdr, 106
SCI-PHY/Any-PHY Configuration, 68
sClkSerRegs, 32
sDPX_CELL_CTRL, 30, 60, 62
sDPX_CELL_HDR, 29, 60, 62
sDPX_CLK_SER_REGS, 32, 33
sDPX_DDB, 34
sDPX_GDD, 34
sDPX_HSS_CNTS, 38, 78
sDPX_HSS_REGS, 32, 57, 59
sDPX_IND_BUF, 80, 81, 85, 86, 103
sDPX_INIT_VECT, 31, 35, 50
sDPX_INIT_VECTOR, 31, 35
sDPX_INT_CTXT, 38
sDPX_INT_ENBLS, 32, 35, 37
sDPX_REGS, 31
sDPX_SCI_ANY_PHY_REGS, 32, 68, 70
sDPX_STAT_COUNTS, 36, 39, 79
Selection Methods, 56
Semaphores, 86, 87
semDelete, 87
semGive, 88
semId, 87, 88

semMCreate, 87
semTake, 87
Setting Active HSS Links, 57
sHssRegs, 32
Shutdown, 44
Shutting Down Devices, 21, 22
Shutting Down Drivers, 45
Significant Events, 80
sInitVector, 35, 50
sIntEnbls, 35
sIntEnRegs, 32
Software States, 19, 20
Source Files, 97
src, 13, 97, 99
sRegInfo, 31
sSciAnyPhyRegs, 32
sStatCounts, 36
States, 19, 20
Statistical Counts, 38, 39, 79
Statistics Collection, 16, 76
sysDuplex, 26, 87, 99, 107
sysDuplexDelayFn, 86, 100
sysDuplexDeviceDetect, 90, 101
sysDuplexDPR, 23
sysDuplexDPRTask, 25, 26, 27, 91, 93, 94, 95,

100
sysDuplexIntHandler, 24, 25, 26, 91, 92, 93, 94,

95, 100, 107
sysDuplexIntInstallHandler, 25, 26, 92, 93, 100
sysDuplexIntRemoveHandler, 92, 94, 100
sysDuplexISR, 23
sysDuplexMemAlloc, 84, 85, 99
sysDuplexMemCopy, 99
sysDuplexMemFree, 85, 99
sysDuplexMemSet, 100
sysDuplexRawRead, 48, 90, 101
sysDuplexRawWrite, 49, 90, 101
sysDuplexSemCreate, 87, 99
sysDuplexSemDelete, 87, 99
sysDuplexSemGive, 87, 88, 99
sysDuplexSemTake, 87, 99

T - Z
Taking Semaphores, 87
Timer Operations, 86
Transmit Serial-Channel Context Bytes, 74, 75
Transmitted Cells, 77
Transmitting BOC, 65
Transmitting Remote-Defect Indications, 67

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 116

UDF, 61
USR_CTXT, 80, 81
usrCtxt, 34, 46, 80, 81, 90, 103
val, 90
Verifying Register Access, 53

Writing to Receive Serial-Channel Context
Bytes, 72

Writing to Registers, 48, 49, 90
Writing to Transmit Serial-Channel Context

Bytes, 75

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 117

PRELIMINARY PM7350 S/UNI-DUPLEX DRIVER

DRIVER MANUAL

PMC-990799 ISSUE 1 S/UNI-DUPLEX DRIVER MANUAL

None of the information contained in this document constitutes an express or implied warranty by PMC-Sierra, Inc. as to the sufficiency, fitness or suitability for a
particular purpose of any such information or the fitness, or suitability for a particular purpose, merchantability, performance, compatibility with other parts or
systems, of any of the products of PMC-Sierra, Inc., or any portion thereof, referred to in this document. PMC-Sierra, Inc. expressly disclaims all representations
and warranties of any kind regarding the contents or use of the information, including, but not limited to, express and implied warranties of accuracy,
completeness, merchantability, fitness for a particular use, or non-infringement.

In no event will PMC-Sierra, Inc. be liable for any direct, indirect, special, incidental or consequential damages, including, but not limited to, lost profits, lost
business or lost data resulting from any use of or reliance upon the information, whether or not PMC-Sierra, Inc. has been advised of the possibility of such
damage.

© 1999 PMC-Sierra, Inc.

PMC-990799 (P1), ref PMC-981033 (P2)

Issue date: July 1999

PROPRIETARY AND CONFIDENTIAL TO PMC -SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 118

CONTACTING PMC-SIERRA, INC.

PMC-Sierra, Inc.
105-8555 Baxter Place Burnaby, BC
Canada V5A 4V7

Tel: (604) 415-6000
Fax: (604) 415-6200

Document Information: document@pmc-sierra.com
Corporate Information: info@pmc-sierra.com
Application Information: apps@pmc-sierra.com
Web Site: http://www.pmc-sierra.com

